不知道后缀数组的请退回去!

题面:

题目描述

很久很久以前,森林里住着一群跳蚤。一天,跳蚤国王得到了一个神秘的字符串,它想进行研究。首先,他会把串分成不超过 k 个子串,然后对于每个子串 S,他会从S的所有子串中选择字典序最大的那一个,并在选出来的 k 个子串中选择字典序最大的那一个。他称其为“魔力串”。现在他想找一个最优的分法让“魔力串”字典序最小。

输入格式

第一行一个整数 k,k≤15

接下来一个长度不超过 10^5的字符串 s。

输出格式

输出一行,表示字典序最小的“魔力串”。

样例

输入样例

2
ababa

输出样例

ba

样例解释

分成aba和ba两个串,其中字典序最大的子串为ba

看到让最大的最小我们就想到二分答案,二分答案在原字符串的所有不同子串中的排名。知道了排名,我们用后缀数组就很好求出答案串是什么(记录其在原串中的起始位置和结束位置),具体方法见代码。

这里还有一点要考虑的是二分的上界也就是子串的个数。其实这很好求就是∑n-sa[i]+1-height[i[。毕竟所有的子串都是一个后缀的前缀,对于一个后缀sa[i],他有n-sa[i]+1个前缀,但是有height[i]个前缀与前面的重复,已经算过了,就得减掉。

然后我们来考虑如何判定。这里我默认大家都会求LCP(LCP(i, j)=min{height[k]}(rank[i]<k<=rank[j]),然后用ST表nlogn预处理,O(1)时间内求出LCP)。记录一个cut=i代表你上次在i-1和i之间切了一刀,令cut的初值为n+1。再记录一个cnt代表切了多少次,如果cnt>=k则不成立(这里注意切了cnt到右cnt+1个块,所以是>=)。每次判定先求出当且串的起始和结束位置记为L, R,然后再从后往前枚举后缀i,求出i和L的LCP。若LCP==0,则判断s[L]和s[i]的大小关系,若s[i]>s[L]则返回false(根据题目要求s[L…R]应是一个快内最大的)。求min{LCP, cut - i, R - L + 1}。若cut-i最小,则说明上次剪的地方到现在这一段都是相同的(<LCP)或者比当前串还短(<R-L+1),此时这个位置一定不需要剪,直接continue。若R-L+1最小或者LCP最小且s[L+LCP]<s[i+LCP]时我们就需要分块。令cut = i + 1,cnt++,然后再判断cnt与k的关系即可。

上代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = ;
ll k;
ll n, m;
ll sa[N], rnk[N], v1[N], v2[N], sum[N], height[N];
ll st[N][];
char s[N];
bool cmp(ll *t, ll a, ll b, ll l) {
return t[a] == t[b] && t[a + l] == t[b + l];
}
void da() {
ll i, j, p = ;
for (i = ; i <= m; i++) sum[i] = ;
for (i = ; i <= n; i++) sum[rnk[i] = s[i]]++;
for (i = ; i <= m; i++) sum[i] += sum[i - ];
for (i = n; i >= ; i--) sa[sum[rnk[i]]--] = i;
for (j = ; j <= n; j *= , m = p) {
for (p = , i = n - j + ; i <= n; i++) v2[++p] = i;
for (i = ; i <= n; i++) if (sa[i] > j) v2[++p] = sa[i] - j;
for (i = ; i <= n; i++) v1[i] = rnk[v2[i]];
for (i = ; i <= m; i++) sum[i] = ;
for (i = ; i <= n; i++) sum[v1[i]]++;
for (i = ; i <= m; i++) sum[i] += sum[i - ];
for (i = n; i >= ; i--) sa[sum[v1[i]]--] = v2[i];
for (swap(rnk, v2), rnk[sa[]] = , p = , i = ; i <= n; i++) {
rnk[sa[i]] = cmp(v2, sa[i - ], sa[i], j) ? p - : p++;
}
}
}
void calheight() {
ll i, j, p = ;
for (i = ; i <= n; i++) {
if (p) p--;
j = sa[rnk[i] - ];
while (s[i + p] == s[j + p]) p++;
height[rnk[i]] = p;
}
}
void st_pre() {
for (ll i = ; i <= n; i++) st[i][] = height[i];
for (ll j = ; j <= ; j++) {
for (ll i = ; i <= n; i++) {
if (i + ( << (j - )) > n) break;
st[i][j] = min(st[i][j - ], st[i + ( << (j - ))][j - ]);
}
}
}
ll LCP(ll l, ll r) {
if (l == r) return n - sa[l] + ;
if (l > r) swap(l, r);
l++;
ll kk = log(r - l + ) / log();
return min(st[l][kk], st[r - ( << kk) + ][kk]);
}
ll pos_l, pos_r, ans_l, ans_r;
void get_string(ll mid) {
for (ll i = ; i <= n; i++) {
ll tmp = n - sa[i] - height[i] + ;
if (mid > tmp) {
mid -= tmp;
} else {
pos_l = sa[i];
pos_r = sa[i] + height[i] - + mid;
return;
}
}
}
bool check() {
for (ll i = n, cut = n + , cnt = ; i >= ; i--) {
ll lcp = LCP(rnk[pos_l], rnk[i]);
if (lcp == && s[i] > s[pos_l]) return false;
lcp = min(lcp, min(pos_r - pos_l + , cut - i));
if (lcp == cut - i) continue;
if (lcp == pos_r - pos_l + || s[i + lcp] > s[pos_l + lcp]) {
cnt++;
cut = i + ;
if (cnt > k) return false;
}
} return true;
}
int main() {
scanf("%lld%s", &k, s + );
k--;
n = strlen(s + );
m = ;
da();
calheight();
st_pre();
ll l = , r = ;
for (ll i = ; i <= n; i++) {
r += n - sa[i] - height[i] + ;
}
while (l <= r) {
ll mid = (l + r) >> ;
get_string(mid);
if (check()) {
ans_l = pos_l;
ans_r = pos_r;
r = mid - ;
} else {
l = mid + ;
}
}
for (ll i = ans_l; i <= ans_r; i++) {
cout << s[i];
}
return ;
}

跳蚤[BZOJ4310](后缀数组+二分答案传判定)的更多相关文章

  1. BZOJ4310 跳蚤(后缀数组+二分答案)

    注意到答案一定是原串的子串,于是考虑造出SA,二分答案是第几小的子串.第k小子串很容易在SA上求出.之后计算使他成为最大子串至少要在几个位置切割,对每个字典序比答案大的后缀,找到所有合法切割位置(求l ...

  2. BZOJ_2946_[Poi2000]公共串_后缀数组+二分答案

    BZOJ_2946_[Poi2000]公共串_后缀数组+二分答案 Description          给出几个由小写字母构成的单词,求它们最长的公共子串的长度. 任务: l        读入单 ...

  3. Poj 1743 Musical Theme(后缀数组+二分答案)

    Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 28435 Accepted: 9604 Descri ...

  4. Poj 3261 Milk Patterns(后缀数组+二分答案)

    Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...

  5. BZOJ4310: 跳蚤 【后缀数组+二分】

    Description 很久很久以前,森林里住着一群跳蚤.一天,跳蚤国王得到了一个神秘的字符串,它想进行研究.首先,他会把串 分成不超过 k 个子串,然后对于每个子串 S,他会从S的所有子串中选择字典 ...

  6. bzoj 4310 跳蚤 —— 后缀数组+二分答案+贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4310 二分答案——在本质不同的子串中二分答案! 如果二分到的子串位置是 st,考虑何时必须分 ...

  7. POJ3294--Life Forms 后缀数组+二分答案 大于k个字符串的最长公共子串

                                                                              Life Forms Time Limit: 500 ...

  8. SPOJ 220 Relevant Phrases of Annihilation(后缀数组+二分答案)

    [题目链接] http://www.spoj.pl/problems/PHRASES/ [题目大意] 求在每个字符串中出现至少两次的最长的子串 [题解] 注意到这么几个关键点:最长,至少两次,每个字符 ...

  9. POJ 3261 Milk Patterns(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=3261 [题目大意] 求最长可允许重叠的出现次数不小于k的子串. [题解] 对原串做一遍后缀数组,二分子串长度x,将前缀相同长度超过 ...

随机推荐

  1. Euler Sums系列(三)

    \[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...

  2. ArrayList、Vector和LinkedList

    List接口特点 1.有序的 collection. 2.可以对列表中每个元素的插入位置进行精确地控制. 3.可以根据元素的索引访问元素,并搜索列表中的元素. 4.列表通常允许重复的元素. 5.允许存 ...

  3. 控制面保护(CPPr)

    除了CoPP外,管理员还可以通过使用控制面保护(Control Plane Protection,CPPr)机制抵御针对控制面的攻击,从本质上讲,CPPr属于CoPP的扩展,在CPPr中控制面接口被划 ...

  4. linux 环境下安装 MySQL

    参考: Linux安装MySQL5.7 注意: 安装后 出现 navicat MySQL连接Linux下MySQL的及2003错误  需要看下 虚拟机的防火墙是否关闭!!!

  5. dp-捡金币

    来源:牛客网 题目描述   最近,奶牛们热衷于把金币包在面粉里,然后把它们烤成馅饼.第i块馅饼中含有Ni(1<=Ni<=25)块金币,并且,这个数字被醒目地标记在馅饼表面. 奶牛们把所有烤 ...

  6. vue.js ②

    1.Vue实例的生命周期钩子 每个 Vue 实例在被创建时都要经过一系列的初始化过程——例如,需要设置数据监听.编译模板.将实例挂载到 DOM 并在数据变化时更新 DOM 等.同时在这个过程中也会运行 ...

  7. DBC的故事(二)

    上篇介绍了MSB和LSB,此篇介绍更复杂的:有符号和无符号数. 1.信号符号 CAN信号有其物理意义,如温度.扭矩等,这些信号是有负值的,常见的解决方案有2种: 1)把offset设成负值 如温度of ...

  8. navicat连接数据库报错:未发现数据源名称并且未指定默认驱动程序

    解决方法:安装navicat自带sqlncli_x64.msi,在navicat安装目录下

  9. windows安装ActiveMQ以及点对点以及发布订阅

    一.MQ产品的分类 1.RabbitMQ 是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级 ...

  10. Ubuntu12.04LTS中安装和使用Spin

    https://blog.csdn.net/jackandsnow/article/details/94434481 把第三步 安装tk(在wish中):apt-get install wish 改为 ...