MySQL InnoDB事务的隔离级别有四级,默认是“可重复读”(REPEATABLE READ)。

未提交读(READ UNCOMMITTED)。另一个事务修改了数据,但尚未提交,而本事务中的SELECT会读到这些未被提交的数据(脏读)。
提交读(READ COMMITTED)。本事务读取到的是最新的数据(其他事务提交后的)。问题是,在同一个事务里,前后两次相同的SELECT会读到不同的结果(不重复读)。
可重复读(REPEATABLE READ)。在同一个事务里,SELECT的结果是事务开始时时间点的状态,因此,同样的SELECT操作读到的结果会是一致的。但是,会有幻读现象(稍后解释)。
串行化(SERIALIZABLE)。读操作会隐式获取共享锁,可以保证不同事务间的互斥。
四个级别逐渐增强,每个级别解决一个问题。

脏读,最容易理解。另一个事务修改了数据,但尚未提交,而本事务中的SELECT会读到这些未被提交的数据。
不重复读。解决了脏读后,会遇到,同一个事务执行过程中,另外一个事务提交了新数据,因此本事务先后两次读到的数据结果会不一致。
幻读。解决了不重复读,保证了同一个事务里,查询的结果都是事务开始时的状态(一致性)。但是,如果另一个事务同时提交了新数据,本事务再更新时,就会“惊奇的”发现了这些新数据,貌似之前读到的数据是“鬼影”一样的幻觉。
借鉴并改造了一个搞笑的比喻:

脏读。假如,中午去食堂打饭吃,看到一个座位被同学小Q占上了,就认为这个座位被占去了,就转身去找其他的座位。不料,这个同学小Q起身走了。事实:该同学小Q只是临时坐了一小下,并未“提交”。
不重复读。假如,中午去食堂打饭吃,看到一个座位是空的,便屁颠屁颠的去打饭,回来后却发现这个座位却被同学小Q占去了。
幻读。假如,中午去食堂打饭吃,看到一个座位是空的,便屁颠屁颠的去打饭,回来后,发现这些座位都还是空的(重复读),窃喜。走到跟前刚准备坐下时,却惊现一个恐龙妹,严重影响食欲。仿佛之前看到的空座位是“幻影”一样。
------

一些文章写到InnoDB的可重复读避免了“幻读”(phantom read),这个说法并不准确。

做个试验:(以下所有试验要注意存储引擎和隔离级别)

mysql> show create table t_bitfly\G;
CREATE TABLE `t_bitfly` (
`id` bigint(20) NOT NULL default '0',
`value` varchar(32) default NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk

mysql> select @@global.tx_isolation, @@tx_isolation;
+-----------------------+-----------------+
| @@global.tx_isolation | @@tx_isolation  |
+-----------------------+-----------------+
| REPEATABLE-READ       | REPEATABLE-READ |
+-----------------------+-----------------+

试验一:

t Session A                   Session B
|
| START TRANSACTION;          START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| empty set
|                             INSERT INTO t_bitfly
|                             VALUES (1, 'a');
|
| SELECT * FROM t_bitfly;
| empty set
|                             COMMIT;
|
| SELECT * FROM t_bitfly;
| empty set
|
| INSERT INTO t_bitfly VALUES (1, 'a');
| ERROR 1062 (23000):
| Duplicate entry '1' for key 1
v (shit, 刚刚明明告诉我没有这条记录的)

如此就出现了幻读,以为表里没有数据,其实数据已经存在了,傻乎乎的提交后,才发现数据冲突了。

试验二:

t Session A                  Session B
|
| START TRANSACTION;         START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                            INSERT INTO t_bitfly
|                            VALUES (2, 'b');
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                            COMMIT;
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|
| UPDATE t_bitfly SET value='z';
| Rows matched: 2  Changed: 2  Warnings: 0
| (怎么多出来一行)
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | z     |
| |    2 | z     |
| +------+-------+
|
v

本事务中第一次读取出一行,做了一次更新后,另一个事务里提交的数据就出现了。也可以看做是一种幻读。

------

那么,InnoDB指出的可以避免幻读是怎么回事呢?

http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html

By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoiding the Phantom Problem Using Next-Key Locking”).

准备的理解是,当隔离级别是可重复读,且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-key locks可以避免幻读。

关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks,还是说需要应用自己来加锁呢?如果单看这一句,可能会以为InnoDB对普通的查询也加了锁,如果是,那和序列化(SERIALIZABLE)的区别又在哪里呢?

MySQL manual里还有一段:

13.2.8.5. Avoiding the Phantom Problem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking with gap locking.

You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the nonexistence of something in your table.

我的理解是说,InnoDB提供了next-key locks,但需要应用程序自己去加锁。manual里提供一个例子:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

这样,InnoDB会给id大于100的行(假如child表里有一行id为102),以及100-102,102+的gap都加上锁。

可以使用show innodb status来查看是否给表加上了锁。

再看一个实验,要注意,表t_bitfly里的id为主键字段。实验三:

t Session A                 Session B
|
| START TRANSACTION;        START TRANSACTION;
|
| SELECT * FROM t_bitfly
| WHERE id<=1
| FOR UPDATE;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           INSERT INTO t_bitfly
|                           VALUES (2, 'b');
|                           Query OK, 1 row affected
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           INSERT INTO t_bitfly
|                           VALUES (0, '0');
|                           (waiting for lock ...
|                           then timeout)
|                           ERROR 1205 (HY000):
|                           Lock wait timeout exceeded;
|                           try restarting transaction
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           COMMIT;
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
v

可以看到,用id<=1加的锁,只锁住了id<=1的范围,可以成功添加id为2的记录,添加id为0的记录时就会等待锁的释放。

MySQL manual里对可重复读里的锁的详细解释:

http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE),UPDATE, and DELETE statements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition. For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it. For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by other sessions into the gaps covered by the range.

------

一致性读和提交读,先看实验,实验四:

t Session A                      Session B
|
| START TRANSACTION;             START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
|                                INSERT INTO t_bitfly
|                                VALUES (2, 'b');
|                                COMMIT;
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
|
| SELECT * FROM t_bitfly LOCK IN SHARE MODE;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| |  2 | b     |
| +----+-------+
|
| SELECT * FROM t_bitfly FOR UPDATE;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| |  2 | b     |
| +----+-------+
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
v

如果使用普通的读,会得到一致性的结果,如果使用了加锁的读,就会读到“最新的”“提交”读的结果。

本身,可重复读和提交读是矛盾的。在同一个事务里,如果保证了可重复读,就会看不到其他事务的提交,违背了提交读;如果保证了提交读,就会导致前后两次读到的结果不一致,违背了可重复读。

可以这么讲,InnoDB提供了这样的机制,在默认的可重复读的隔离级别里,可以使用加锁读去查询最新的数据。

http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html

If you want to see the “freshest” state of the database, you should use either the READ COMMITTED isolation level or a locking read:
SELECT * FROM t_bitfly LOCK IN SHARE MODE;

------

结论:MySQL InnoDB的可重复读并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-key locks。

MySQL的InnoDB的幻读问题的更多相关文章

  1. MySQL 是如何解决幻读的

    MySQL 是如何解决幻读的 一.什么是幻读 在一次事务里面,多次查询之后,结果集的个数不一致的情况叫做幻读. 而多出来或者少的哪一行被叫做 幻行 二.为什么要解决幻读 在高并发数据库系统中,需要保证 ...

  2. 何为幻读?MySQL又是如何解决幻读的?

    一.什么是幻读 在一次事务里面,多次查询之后,查询的结果集的个数不一致的情况叫做幻读.而多出来或者少的哪一行被叫做 幻行 二.为什么要解决幻读 在高并发数据库系统中,需要保证事务与事务之间的隔离性,还 ...

  3. 【大厂面试03期】MySQL是怎么解决幻读问题的?

    问题分析 首先幻读是什么? 根据MySQL文档上面的定义 The so-called phantom problem occurs within a transaction when the same ...

  4. InnoDB解决幻读的方案——LBCC&MVCC

    最近要在公司内做一次技术分享,思来想去不知道该分享些什么,最后在朋友的提示下,准备分享一下MySQL的InnoDB引擎下的事务幻读问题与解决方案--LBCC&MVCC.经过好几天的熬夜通宵,终 ...

  5. MySQL是怎么解决幻读问题的?

    前言 我们知道MySQL在可重复读隔离级别下别的事物提交的内容,是看不到的.而可提交隔离级别下是可以看到别的事务提交的.而如果我们的业务场景是在事物内同样的两个查询我们需要看到的数据都是一致的,不能被 ...

  6. MySQL到底能否解决幻读问题

    先说结论,MySQL 存储引擎 InnoDB 在可重复读(RR)隔离级别下是解决了幻读问题的. 方法:是通过next-key lock在当前读事务开启时,1.给涉及到的行加写锁(行锁)防止写操作:2. ...

  7. MySQL之MVCC与幻读

    转自 https://blog.csdn.net/qq_31930499/article/details/110393988 如果是快照度,直接采用MVCC,如果是当前读,才会走next-key lo ...

  8. mysql系列:加深对脏读、脏写、可重复读、幻读的理解

    关于相关术语的专业解释,请自行百度了解,本文皆本人自己结合参考书和自己的理解所做的阐述,如有不严谨之处,还请多多指教. 事务有四种基本特性,叫ACID,它们分别是: Atomicity-原子性,Con ...

  9. Innodb 中 RR 隔离级别能否防止幻读?

    问题引出 我之前的一篇博客 数据库并发不一致分析 有提到过事务隔离级别以及相应加锁方式.能够解决的并发问题. 标准情况下,在 RR(Repeatable Read) 隔离级别下能解决不可重复读(当行修 ...

随机推荐

  1. xv6 锁

    在xv6 中锁对象是 spinlock,spinlock中的locked为1的时候表示被占用,为0的时候锁空闲. struct spinlock { uint locked; // Is the lo ...

  2. Go——标准库使用代理

    本文知识点 Go的安装 Go使用代理 Go进阶学习 环境配置 Go的安装 确认环境都安装好了,看看go的版本. go version 代码样例 使用代理,发送GET请求 package main im ...

  3. SQL优化工具 - SQL Server Profiler与数据库引擎优化顾问

    最近项目做到几千个学生分别去人脸识别记录(目前约630000行)中查询最后一次记录,可想而知性能这块是个麻烦.于是乎,GET到了SQL Server Profiler和数据库引擎优化顾问这俩工SHEN ...

  4. opencv人脸检测

    找了一张自己喜欢的<超人前传>剧照 其中的xml分类器需要到https://github.com/opencv/opencv/tree/master/data/haarcascades去下 ...

  5. POJ 3096:Surprising Strings

    Surprising Strings Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6258   Accepted: 407 ...

  6. Hibernate 的SessionFactory

    1.当我们调用 Configuration config=new Configuration().configure(); 时候Hibernate会自动在当前的CLASSPATH中搜寻hibernat ...

  7. 出现这样的错误提示: E: Sub-process /usr/bin/dpkg returned an error code

    1.$ sudo mv /var/lib/dpkg/info /var/lib/dpkg/info_old //现将info文件夹更名2.$ sudo mkdir /var/lib/dpkg/info ...

  8. UVA 11997 The K smallest Sums

    给出K*K的矩阵,每一行取一个数,构成K个数的和,总共有 k^k种可能,从中取出前k个最小的. 一开始犯了错,因为只要对每行排序,最小的必定是第一列的和,然后我当时就想着,逐步推进,每次将某行的那个数 ...

  9. 吴裕雄--天生自然Django框架开发笔记:Django Admin 管理工具

    Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.可以在项目的 settings.py 中的 INSTALLED_APPS 看到它: ...

  10. PAT Advanced A1021 Deepest Root (25) [图的遍历,DFS,计算连通分量的个数,BFS,并查集]

    题目 A graph which is connected and acyclic can be considered a tree. The height of the tree depends o ...