什么是深度信念网络

深度信念网络是第一批成功应用深度架构训练的非卷积模型之一。 在引入深度信念网络之前,研究社区通常认为深度模型太难优化,还不如使用易于优化的浅层ML模型。2006年,Hinton等研究者在Science上表示,深度信念网络在MNIST数据集上表现超过带核函数的支持向量机,以此证明深度架构是能够成功的。

论文1:Reducing the Dimensionality of Data with Neural Networks

论文地址:https://science.sciencemag.org/content/313/5786/504

论文2:A fast learning algorithm for deep belief nets

论文地址:https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

尽管现在与其他无监督或生成学习算法相比,深度信念网络大多已经失去了研究者青睐并很少使用,但它们在深度学习历史中仍然有非常重要的作用。

此外,如果需要理解DBN,那么首先需要知道什么是受限玻尔兹曼机(RBM)。因为深度信念网络就是受限玻尔兹曼机的堆叠,并采用一种贪心的方式训练。

受限玻尔兹曼机

RBM是两层神经网络,这些浅层神经网络是DBN(深度信念网络)的构建块。RBM的第一层被称为可见层或者输入层,它的第二层叫做隐藏层。RBM之所以加上“受限”,主要是因为不存在层级间的通信。RBM在前传的过程中看上去和全连接没什么区别,但实际上它是一种无向图,所以还有一个反向过程。

除了前传,RBM以一种无监督的方式通过自身来重建数据。如上图所示,在重建阶段,第一个隐藏层的激活状态变成了反向传递过程中的输入。它们与每个连接边相同的权重相乘,就像x在前向传递的过程中随着权重调节一样。这些乘积的和在每个可见节点处又与可见层的偏置项相加,这些运算的输出就是一次重建,也就是对原始输入的一个逼近。

如果能重建出来对应的观察样本,那么就表示RBM获得的隐藏表征非常优质。如下选自Deep Learning书中描述了三种早期的神经网络。

a) 受限玻尔兹曼机,b) 深度信念网络,c) 深度玻尔兹曼机。其中带箭头表示有向图,无箭头表示无向图。

深度信念网络

深度信念网络是一种深层的概率有向图模型,其图结构由多层的节点构成。网络的最底层为可观测变量,其它层节点都为隐变量。最顶部的连接是无向的,其他层之间的连接是有向的。它的目的主要在获取可观测变量下,推断未知变量的状态,并调整隐藏状态以尽可能重构出可观测数据。

在Hinton一个多小时的演讲中,它从信念网络到受限玻尔兹曼机,从基本思想到理论解析展示了整个深度信念网络的全景图。不过Hinton老爷子的演讲还挺难懂的,想要了解的同学可以看看完整的PPT。

理论优美的深度信念网络--Hinton北大最新演讲的更多相关文章

  1. 机器学习——DBN深度信念网络详解(转)

    深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 简要描述深度神经网络模型. 1.  自联想神经网络 ...

  2. 受限玻尔兹曼机(RBM, Restricted Boltzmann machines)和深度信念网络(DBN, Deep Belief Networks)

    受限玻尔兹曼机对于当今的非监督学习有一定的启发意义. 深度信念网络(DBN, Deep Belief Networks)于2006年由Geoffery Hinton提出.

  3. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...

  4. 深度学习(二)--深度信念网络(DBN)

    深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一.受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了 ...

  5. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...

  6. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...

  7. DBN(深度信念网络)

    DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调.本例中采用softmax分类器(下一篇随笔中)作为监督学习算法. RBM与上一篇随笔中一 ...

  8. 基于C#的机器学习--深层信念网络

    我们都听说过深度学习,但是有多少人知道深度信念网络是什么?让我们从本章开始回答这个问题.深度信念网络是一种非常先进的机器学习形式,其意义正在迅速演变.作为一名机器学习开发人员,对这个概念有一定的了解是 ...

  9. RBM(受限玻尔兹曼机)和深层信念网络(Deep Brief Network)

    目录: 一.RBM 二.Deep Brief Network 三.Deep Autoencoder 一.RBM 1.定义[无监督学习] RBM记住三个要诀:1)两层结构图,可视层和隐藏层:[没输出层] ...

随机推荐

  1. Day3-T4

    原题目 Describe:有点恶心的DP+最短路 code: #include<bits/stdc++.h> using namespace std; long long A,B,C,z, ...

  2. apache2+django+virtualenv 服务器部署实战

    目录 基本配置 配置python环境 安装 python.pip 安装 virtualenv 配置python虚拟环境 配置 apache2 安装 apache2 安装 mod-wsgi 服务 部署d ...

  3. consul生产实战

    pwd:/home/appadmin wget https://releases.hashicorp.com/consul/1.6.1/consul_1.6.1_linux_amd64.zip unz ...

  4. HashMap核心功能源码浅析

    1.引子 "HashMap"由“hash”和“map"两个单词组成,这里的”map"表示“映射”而不是“地图”的意思,两个单词连起来就是“哈希映射表”.Map是 ...

  5. python:批量修改文件名批量修改图片尺寸

    批量修改文件名  参考博客:https://www.cnblogs.com/zf-blog/p/7880126.html 功能:批量修改文件名 1 2 3 4 5 6 7 8 9 10 11 12 1 ...

  6. XML--XML Schema Definition(四)

    参考 http://www.w3school.com.cn/schema/index.asp XSD 复合类型指示器 通过指示器,我们可以控制在文档中使用元素的方式.有七种指示器: Order 指示器 ...

  7. h5-任意元素居中

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. UML-逻辑架构精化

    向下请求:Facade模式 向上返回:观察者模式 不局限于上图中指定的层使用相应模式,其他层也可以使用. 另外,尽量不要出现“公共业务模块”,设计时尽量做好系统拆分.否则,一旦修改公共代码,可能会影响 ...

  9. UML-架构分析-阶段

    初始阶段:架构概念验证原型--->确定其可行性 细化阶段:因素表.技术备忘录.SAD(软件架构文档) 移交阶段:可能会修改SAD->确保与最终部署版本的一致性 后续进化循环:重温架构性因素 ...

  10. Java学习十八

    学习内容: 1.Java集合 1.自定义的set类添加重复数据需要在实体类中添加hashcode和equals方法. 2.查找set对象信息(以宠物猫为例) //在集合中查找花花的信息并输出 if(s ...