什么是深度信念网络

深度信念网络是第一批成功应用深度架构训练的非卷积模型之一。 在引入深度信念网络之前,研究社区通常认为深度模型太难优化,还不如使用易于优化的浅层ML模型。2006年,Hinton等研究者在Science上表示,深度信念网络在MNIST数据集上表现超过带核函数的支持向量机,以此证明深度架构是能够成功的。

论文1:Reducing the Dimensionality of Data with Neural Networks

论文地址:https://science.sciencemag.org/content/313/5786/504

论文2:A fast learning algorithm for deep belief nets

论文地址:https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

尽管现在与其他无监督或生成学习算法相比,深度信念网络大多已经失去了研究者青睐并很少使用,但它们在深度学习历史中仍然有非常重要的作用。

此外,如果需要理解DBN,那么首先需要知道什么是受限玻尔兹曼机(RBM)。因为深度信念网络就是受限玻尔兹曼机的堆叠,并采用一种贪心的方式训练。

受限玻尔兹曼机

RBM是两层神经网络,这些浅层神经网络是DBN(深度信念网络)的构建块。RBM的第一层被称为可见层或者输入层,它的第二层叫做隐藏层。RBM之所以加上“受限”,主要是因为不存在层级间的通信。RBM在前传的过程中看上去和全连接没什么区别,但实际上它是一种无向图,所以还有一个反向过程。

除了前传,RBM以一种无监督的方式通过自身来重建数据。如上图所示,在重建阶段,第一个隐藏层的激活状态变成了反向传递过程中的输入。它们与每个连接边相同的权重相乘,就像x在前向传递的过程中随着权重调节一样。这些乘积的和在每个可见节点处又与可见层的偏置项相加,这些运算的输出就是一次重建,也就是对原始输入的一个逼近。

如果能重建出来对应的观察样本,那么就表示RBM获得的隐藏表征非常优质。如下选自Deep Learning书中描述了三种早期的神经网络。

a) 受限玻尔兹曼机,b) 深度信念网络,c) 深度玻尔兹曼机。其中带箭头表示有向图,无箭头表示无向图。

深度信念网络

深度信念网络是一种深层的概率有向图模型,其图结构由多层的节点构成。网络的最底层为可观测变量,其它层节点都为隐变量。最顶部的连接是无向的,其他层之间的连接是有向的。它的目的主要在获取可观测变量下,推断未知变量的状态,并调整隐藏状态以尽可能重构出可观测数据。

在Hinton一个多小时的演讲中,它从信念网络到受限玻尔兹曼机,从基本思想到理论解析展示了整个深度信念网络的全景图。不过Hinton老爷子的演讲还挺难懂的,想要了解的同学可以看看完整的PPT。

理论优美的深度信念网络--Hinton北大最新演讲的更多相关文章

  1. 机器学习——DBN深度信念网络详解(转)

    深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 简要描述深度神经网络模型. 1.  自联想神经网络 ...

  2. 受限玻尔兹曼机(RBM, Restricted Boltzmann machines)和深度信念网络(DBN, Deep Belief Networks)

    受限玻尔兹曼机对于当今的非监督学习有一定的启发意义. 深度信念网络(DBN, Deep Belief Networks)于2006年由Geoffery Hinton提出.

  3. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...

  4. 深度学习(二)--深度信念网络(DBN)

    深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一.受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了 ...

  5. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...

  6. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...

  7. DBN(深度信念网络)

    DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调.本例中采用softmax分类器(下一篇随笔中)作为监督学习算法. RBM与上一篇随笔中一 ...

  8. 基于C#的机器学习--深层信念网络

    我们都听说过深度学习,但是有多少人知道深度信念网络是什么?让我们从本章开始回答这个问题.深度信念网络是一种非常先进的机器学习形式,其意义正在迅速演变.作为一名机器学习开发人员,对这个概念有一定的了解是 ...

  9. RBM(受限玻尔兹曼机)和深层信念网络(Deep Brief Network)

    目录: 一.RBM 二.Deep Brief Network 三.Deep Autoencoder 一.RBM 1.定义[无监督学习] RBM记住三个要诀:1)两层结构图,可视层和隐藏层:[没输出层] ...

随机推荐

  1. 第十四篇Django-model进阶(中介模型,查询优化,extra,整体插入)

    Django-model进阶(中介模型,查询优化,extra,整体插入) 阅读目录(Content) 中介模型 查询优化 extra 整体插入 中介模型 处理类似搭配 pizza 和 topping ...

  2. file:///D:/Program%20Files/Microsoft%20Visual%20Studio%2011.0/VC/VCWizards/CodeWiz/MFC/Variable/HTML

    title VS2005  VS2008添加变量,添加函数,添加类时弹出 Script Error  解决办法 问现象描述 : 问题大家都清楚了.不赘述 错误提示 :file:///C:/Progra ...

  3. 把Ubuntu系统自带的源修改为国内的源,中科大源链接:https://mirrors.ustc.edu.cn/repogen/

    https://mirrors.ustc.edu.cn/repogen/ Tips: 可通过 URL 的形式直接下载配置. 例如: https://mirrors.ustc.edu.cn/repoge ...

  4. AD在更新PCB的时候,每次封装都会改变位置?

    转载:https://blog.csdn.net/abc87891842/article/details/52538660 3.如果是很多元件的ID不一致, 手动修改太麻烦了, 可以使用AD的 &qu ...

  5. 从华硕裁员、分拆业务看传统PC企业转型到底有多难?

    近段时间,华硕的处境可谓"冰火两重天".一方面,华硕正式发布ROG游戏手机.这款手机以超强性能和华丽外观,让游戏玩家群体为之沸腾.即使最高售价高达12999元,还是有不少玩家趋之若 ...

  6. 使用IDEA打对应结构的Jar包

    发布环境的内容和自己项目默认打包的样式不一样,就需要自定义打印jar包内容. 1.打开右上角项目结构 2.进行图片相关设置 3.直接进行打包,包会出现在class文件里面.解压软件解压开就是自己想要的 ...

  7. ping.sh

    扫描整个网段  nmap -sP 10.0.0.0/24 #!/bin/bash ps () { ping $1 -c 3 -w 2 |grep -q "ttl"      #结果 ...

  8. COGS1487 麻球繁衍

    不会做%%http://blog.csdn.net/doom_bringer/article/details/50428503 #include<bits/stdc++.h> #defin ...

  9. 数据库连接池DBCP的使用

    一.直接使用代码链接(一般企业开发不用这种方式) 1.导入JAR 把jar包拷贝到lib文件夹里面然后右击 build path一下 2.建一个jdbc.proprtties文件 driverClas ...

  10. HDU 1226 超级密码(BFS) (还需研究)

    Time Limit:10000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Desc ...