numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

在指定的间隔内返回均匀间隔的数字。

返回num均匀分布的样本,在[start, stop]。

这个区间的端点可以任意的被排除在外。

Parameters(参数):

start : scalar(标量)

The starting value of the sequence(序列的起始点).

stop : scalar

序列的结束点,除非endpoint被设置为False,在这种情况下, the sequence consists of all but the last of num + 1 evenly spaced samples(该序列包括所有除了最后的num+1上均匀分布的样本(感觉这样翻译有点坑)), 以致于stop被排除.当endpoint is False的时候注意步长的大小(下面有例子).

num : int, optional(可选)

生成的样本数,默认是50。必须是非负。

endpoint : bool, optional

如果是真,则一定包括stop,如果为False,一定不会有stop

retstep : bool, optional

If True, return (samples, step), where step is the spacing between samples.(看例子)

dtype : dtype, optional

The type of the output array. If dtype is not given, infer the data type from the other input arguments(推断这个输入用例从其他的输入中).

New in version 1.9.0.

Returns:

samples : ndarray

There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False).

step : float(只有当retstep设置为真的时候才会存在)

Only returned if retstep is True

Size of spacing between samples.

See also

arange
Similar to linspace, but uses a step size (instead of the number of samples).
arange使用的是步长,而不是样本的数量 
logspace
Samples uniformly distributed in log space.
 
当endpoint被设置为False的时候
>>> import numpy as np
>>> np.linspace(1, 10, 10)
array([  1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.])
>>> np.linspace(1, 10, 10, endpoint = False)
array([ 1. ,  1.9,  2.8,  3.7,  4.6,  5.5,  6.4,  7.3,  8.2,  9.1])
In [4]: np.linspace(1, 10, 10, endpoint = False, retstep= True)
Out[4]: (array([ 1. ,  1.9,  2.8,  3.7,  4.6,  5.5,  6.4,  7.3,  8.2,  9.1]), 0.9)

官网的例子

Examples

>>>

>>> np.linspace(2.0, 3.0, num=5)
array([ 2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([ 2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)

Graphical illustration:

>>>

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

numpy.linspace使用详解的更多相关文章

  1. numpy的linspace使用详解

    文档地址: https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html Parameters(参数): start ...

  2. python常用模块numpy解析(详解)

    numpy模块 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 后打开浏览器输入网址http://local ...

  3. numpy模块(详解)

    重点 索引和切片 级联 聚合操作 统计操作 矩阵 什么是数据分析 是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 数据分析是用适当的方法对收集来的大量数据进行分析,帮助 ...

  4. numpy.where() 用法详解

    numpy.where (condition[, x, y]) numpy.where() 有两种用法: 1. np.where(condition, x, y) 满足条件(condition),输出 ...

  5. numpy表示图片详解

    我自己的一个体会,在学习机器学习和深度学习的过程里,包括阅读模型源码的过程里,一个比较大的阻碍是对numpy掌握的不熟,有的时候对矩阵的维度,矩阵中每个元素值的含义晕乎乎的. 本文就以一个2 x 2 ...

  6. numpy sum axis详解

    axis 先看懂numpy.argmax的含义.那么numpy.sum就非常好理解. 看一维的例子. import numpy as np a = np.array([1, 5, 5, 2]) pri ...

  7. 【python】详解numpy库与pandas库axis=0,axis= 1轴的用法

    对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴: axis = 1 代表对纵轴操作,也就是第1轴: nu ...

  8. numpy的文件存储.npy .npz 文件详解

    Numpy能够读写磁盘上的文本数据或二进制数据. 将数组以二进制格式保存到磁盘 np.load和np.save是读写磁盘数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 ...

  9. matplotlib模块详解

    简单绘图,折线图,并保存为图片 import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[10,5,15,10,20] plt.plot(x,y,'ro-',c ...

随机推荐

  1. F: Horse Pro 马走棋盘 BFS

    F: Horse Pro 豆豆也已经开始学着玩象棋了,现在豆豆已经搞清楚马的走法了,但是豆豆不能确定能否在 100 步以内从一个点到达另一个点(假设棋盘无限大). Input 第一行输入两个整数 x1 ...

  2. bootloader与启动地址偏移

    如果项目工程是IAP+APP,则在keil的APP中要么在修改IROM/IRAM的开始地址和大小,并在MAP中勾选设置. 在NVIC中修改system_stm32f10x.c修改 这个在void Sy ...

  3. IP地址规划

    IP地址(Internet Protocol Address),缩写为IP Adress,是一种在Internet上的给主机统一编址的地址格式,也称为网络协议(IP协议)地址.它为互联网上的每一个网络 ...

  4. js中各种类型转换为Boolean类型

    数据类型  转换为true的值  转换为false的值 Boolean  true  false String  任何非空字符串  空字符串 Number  任何非零数字值(包括无穷大) 0和null ...

  5. 《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析

    目录 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 有关现金流映射技术的推导 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 在解关键方程的时候施加 \(L^1\) 约束也许可以 ...

  6. 《React后台管理系统实战 零》:基础笔记

    day01 1. 项目开发准备 1). 描述项目 2). 技术选型 3). API接口/接口文档/测试接口 2. 启动项目开发 1). 使用react脚手架创建项目 2). 开发环境运行: npm s ...

  7. Python 中的经典类新式类

    Python 中的经典类新式类 要知道经典类和新式类的区别,首先要掌握类的继承 类的继承的一个优点就是减少代码冗余 广度优先和深度优先,这主要是在多类继承的时候会使用到 经典类和新式类的主要区别就是类 ...

  8. Python作业篇 day04

    ###一.写代码,有如下列表,按照要求实现每一个功能 li=['alex','bibi','cc0','didi'] #1.计算列表的长度 #2.列表中追加元素'seven',并输出添加后的列表 #3 ...

  9. ASP.NET MVC 4 中Razor 视图中JS无法调试 (重要)

    谷歌浏览器,firefox,IE 都可以 1.首先检查IE中这2个属性是否勾选了. 2.选择IE浏览器进行调试,调试方法有2种 A:采用debugger;的方法,如下图所示: 这时不用调试断点就会在d ...

  10. 中国6G为什么要从现在上路?

    现在,通信5G的概念早已深入人心,正在从蓝图上的规划走向现实,平心而论,中国在2G/3G/4G时代都没有太突出的表现,或受制于人.或沦为跟随者,如今中国想翻身,于是从一开始就卯足了劲儿抢跑5G,不仅把 ...