引言

使用了免费的人脸识别算法,感觉还是很不错的,但是初次接触的话会对一些接口的参数有些疑问的。这里分享一下我对一些参数的验证结果(这里以windows版本为例,linux、android基本一样),希望能更好的帮助各位接入虹软的人脸识别算法。

本文主要分析以下两个参数:

  • detectFaceMaxNum
  • combinedMask

detectMode参数介绍

在引擎初始化的时候,需要选择videoimage模式,在接口头文件中定义了宏ASF_DETECT_MODE_VIDEOASF_DETECT_MODE_IMAGE,根据需要的模式传入即可。video模式对应人脸追踪算法(FT),image模式对应人脸检测算法(FD),关于FT/FD算法的区别可以参考虹软AI 人脸识别SDK接入 — 参数优化篇(1) 通过测试数据,个人感觉image模式下的数据更能准确的体现算法的能力,下面关于其他参数的介绍均在image模式下进行;

测试机器硬件配置:

  • 处理器:Intel(R)Corei5-7400 CPU @ 3.00GHZ 300GHZ
  • 安装内存(RAM):16.00GB(15.9GB可用)
  • 系统类型:win-10 64位操作系统

参数介绍:

一、detectFaceMaxNum参数说明

1.1 推荐值

初始化接口中detectFaceMaxNum参数的设置决定ASFDetectFaces(FT/FD)接口单帧图片允许检测的最大人脸数,官网推荐最大值不超过50,虽然可以设置更大的值,但是没有必要,下面数据可以说明;

1.2 检测到的人脸数对应的性能消耗

测试用例:

  1. 1280*720像素图像数据;
  2. 循环检测100次取平均值;
  • ASF_DETECT_MODE_IMAGE模式

单帧图片中人脸数

耗时(ms)

1

16

2

21

4

167

8

186

16

289

  • ASF_DETECT_MODE_VIDEO模式

单帧图片中人脸数

耗时(ms)

1

3

2

4

4

4

8

4

16

5

通过以上数据可以看出,image模式下图片中人脸数越多单次检测的耗时会越长,video模式下图片中人脸数越多单次检测的耗时也会有略微增加。综上,detectFaceMaxNum参数的设置多少并不影响内存的分配以及性能的消耗,仅是设置算法单帧检测的最大人脸数。

二、combinedMask参数说明

2.1 内存占用

combinedMask参数是初始化引擎时传入不同属性功能组合,传入的属性越多引擎分配的内存越大。实际应用情况下,传入必需的属性组合即可,传入多余属性只会占用内存。

下表数据是在测试其他参数固定,只修改mask参数时初始化接口内存的占用情况(数据取自windows任务管理器):

ASFInitEngine(ASF_DETECT_MODE_IMAGE, ASF_OP_0_ONLY, 32, 5, combinedMask, &handle);

combinedMask

内存占用(KB)

对应算法接口

全属性

121,148

全接口

无属性

4,920

ASF_FACE_DETECT

44,424

ASFDetectFaces

ASF_FACERECOGNITION

27,564

ASFFaceFeatureExtract
ASFFaceFeatureCompare

ASF_AGE

23,008

ASFProcess/ASFGetAge

ASF_GENDER

23,316

ASFProcess/ASFGetGender

ASF_FACE3DANGLE

20,484

ASFProcess/ASFGetFace3DAngle

ASF_LIVENESS

53,200

ASFProcess/ASFGetLivenessScore

2.2 ASFInitEngine接口与ASFProcess接口中combinedMask参数的关系

官方文档对ASFProcess接口中combinedMask参数的解释:

初始化中参数combinedMaskASF_AGE | ASF_GENDER | ASF_FACE3DANGLE | ASF_LIVENESS交集的子集;

举例说明:

例1:ASFInitEngine接口中传入全属性,则ASFProcess接口可以传入ASF_AGE、ASF_GENDER、 ASF_FACE3DANGLE、 ASF_LIVENESS四种属性的任意组合。

例2:ASFInitEngine接口中传入ASF_FACE_DETECT | ASF_FACERECOGNITION | ASF_AGE | ASF_GENDER ,则ASFProcess接口只能传入ASF_AGE、 ASF_GENDER两种属性的任意组合。

2.3 cpu占用

cpu占用受设备以及测试条件影响比较大,根据使用情况ASF_AGE | ASF_GENDER | ASF_FACE3DANGLE对应的算法对cpu的消耗是比较少的,但ASF_LIVENESS是比较消耗cpu资源的,需要根据自身设备做对应处理。

2.4 ASFProcess接口不同属性的性能

测试用例:

  1. 1280*720像素图像数据;
  2. 循环检测100次取平均值;

测试代码:

LARGE_INTEGER  litmp;
LONGLONG  QPart = 0, QPart1 = 0, QPart2 = 0;
QueryPerformanceFrequency(&litmp);   //获得时钟频率
QPart = litmp.QuadPart;
//获得开始时CPU嘀哒声
QueryPerformanceCounter(&litmp);//获得时钟初始值
QPart1 = litmp.QuadPart;
 
//这里要计算的的代码执行的时间
for (int i = 0; i<100; i++)
{
         res = ASFProcess(handle, cutImg1->width, cutImg1->height, ASVL_PAF_RGB24_B8G8R8, (MUInt8*)cutImg1->imageData, &detectedFaces1, processMask);
}
 
QueryPerformanceCounter(&litmp);     //获得时钟终止值
QPart2 = litmp.QuadPart;
//计算时间差(ms)
double time = (double)(QPart2 - QPart1) / (double)QPart * 1000;
printf("time = %lf\n", time);

测试结果

combinedMask参数

性能(ms)

ASF_AGE/ASF_GENDER/
ASF_FACE3DANGLE/ASF_LIVENESS

193

ASF_AGE

29

ASF_GENDER

13

ASF_FACE3DANGLE

7

ASF_LIVENESS

169

综上所述,年龄、性别、3d角度的检测是非常快的,活体检测相对较慢。在实际应用中仅需要检测ASF_AGE、ASF_GENDER、 ASF_FACE3DANGLE的话,可以放在主线程中处理,但如果需要检测ASF_LIVENESS建议单开线程去处理,这样在video模式下不会出现卡帧的情况,界面显示比较流畅。

如果想下载虹软sdk的话,可以去https://ai.arcsoft.com.cn/product/arcface.html?utm_source=bky&utm_medium=referral

虹软AI 人脸识别SDK接入 — 参数优化篇的更多相关文章

  1. AI人脸识别SDK接入 — 参数优化篇(虹软)

    引言 使用了虹软公司免费的人脸识别算法,感觉还是很不错的,当然,如果是初次接触的话会对一些接口的参数有些疑问的.这里分享一下我对一些参数的验证结果(这里以windows版本为例,linux.andro ...

  2. 虹软人脸识别SDK接入Milvus实现海量人脸快速检索

    一.背景 人脸识别是近年来最热门的计算机视觉领域的应用之一,而且现在已经出现了非常多的人脸识别算法,如:DeepID.FaceNet.DeepFace等等.人脸识别被广泛应用于景区.客运.酒店.办公室 ...

  3. 虹软免费人脸识别SDK注册指南

    成为开发者三步完成账号的基本注册与认证:STEP1:点击注册虹软AI开放平台右上角注册选项,完成注册流程.STEP2:首次使用,登录后进入开发者中心,点击账号管理完成企业或者个人认证,若未进行实名认证 ...

  4. Android 虹软免费人脸识别 SDK开发

    目前我们的应用内使用了 ArcFace 的人脸检测功能,其他的我们并不了解,所以这里就和大家分享一下我们的集成过程和一些使用心得集成ArcFace FD 的集成过程非常简单在 ArcFace FD 的 ...

  5. 虹软人脸识别SDK在网络摄像头中的实际应用

    目前在人脸识别领域中,网络摄像头的使用很普遍,但接入网络摄像头和人脸识别SDK有一定门槛,在此篇中介绍过虹软人脸识别SDK的接入流程,本文着重介绍网络摄像头获取视频流并处理的流程(红色框内),以下内容 ...

  6. 关于虹软人脸识别SDK的接入

    背景: 虹软的人脸识别还是不错的,在官方注册一个账号,成为开发者,下载SDK的jar包,在开发者中心,找一个demo就可以开始做了,安装里边的逻辑,先看理解代码,然后就可以控制代码,完成自己想要的功能 ...

  7. 虹软人脸识别SDK的接入方法

    背景: 虹软的人脸识别还是不错的,在官方注册一个账号,成为开发者,下载SDK的jar包,在开发者中心,找一个demo就可以开始做了,安装里边的逻辑,先看理解代码,然后就可以控制代码,完成自己想要的功能 ...

  8. Java版 人脸识别SDK demo

    虹软人脸识别SDK之Java版,支持SDK 1.1+,以及当前最新版本2.0,滴滴,抓紧上车! 前言 由于业务需求,最近跟人脸识别杠上了,本以为虹软提供的SDK是那种面向开发语言的,结果是一堆dll· ...

  9. Java版 人脸识别SDK dem

    虹软人脸识别SDK之Java版,支持SDK 1.1+,以及2.0版本,滴滴,抓紧上车! 前言由于业务需求,最近跟人脸识别杠上了,本以为虹软提供的SDK是那种面向开发语言的,结果是一堆dll······ ...

随机推荐

  1. Java找零钱算法

    买东西过程中,卖家经常需要找零钱.现用代码实现找零钱的方法,要求优先使用面额大的纸币,假设卖家有足够数量的各种面额的纸币. 下面给出的算法比较简单,也符合人的直觉:把找零不断地减掉小于它的最大面额的纸 ...

  2. DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird

    在上一篇博客中,我们详细的对Q-learning的算法流程进行了介绍.同时我们使用了\(\epsilon-贪婪法\)防止陷入局部最优. 那么我们可以想一下,最后我们得到的结果是什么样的呢?因为我们考虑 ...

  3. 浅谈SIEM

    一.概念 SIEM ( Security Information Event Management,安全信息与事件管理) Gartner的定义:安全信息和事件管理(SIEM)技术通过对来自各种事件和上 ...

  4. 50个SQL语句(MySQL版) 问题五

    --------------------------表结构-------------------------- student(StuId,StuName,StuAge,StuSex) 学生表 tea ...

  5. 通过jquery实现tab切换

    //css代码 *{ margin: 0; padding: 0; } #box{ margin: 0 auto; width: 800px; border: 5px solid #000000; o ...

  6. PAT 1036 Boys vs Girls (25分) 比大小而已

    题目 This time you are asked to tell the difference between the lowest grade of all the male students ...

  7. Alpha总结展望——前事不忘后事之师

    这个作业属于哪个课程 软件工程 这个作业要求在哪里 Alpha总结展望--前事不忘后事之师 这个作业的目标 Alpha总结展望 作业正文 正文 其他参考文献 无 一.个人感想总结 吴秋悦: 对Alph ...

  8. JavaSE (四)程序流程控制 -- if 、switch、for、while

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 目录 前置: * . 从键盘读取数据: 1.分支结构 1.1 if-else结构 1.2 switch- ...

  9. 利用init进程监控底层节点的方法架构

    native层利用底层节点变化,再针对变化进行相应的函数调用,实现某些功能. 架构如下: 底层提供节点更新,以及healthd读取节点的实现,都比较简单.而其余部分比较关键. 特别注意init监控pr ...

  10. Java 第十一届 蓝桥杯 省模拟赛 第十层的二叉树

    一棵10层的二叉树,最多包含多少个结点? 注意当一棵二叉树只有一个结点时为一层. 答案提交 这是一道结果填空的题,你只需要算出结果后提交即可.本题的结果为一个整数,在提交答案时只填写这个整数,填写多余 ...