用 20 行 python 代码实现人脸识别!
点击上方“Python编程与实战”,选择“置顶公众号”
第一时间获取 Python 技术干货!
阅读文本大概需要 11分钟。
今天给大家介绍一个世界上最简洁的人脸识别库 face_recognition,你可以使用 Python 和命令行工具进行提取、识别、操作人脸。
基于业内领先的 C++ 开源库 dlib 中的深度学习模型,用 Labeled Faces in the Wild 人脸数据集进行测试,有高达99.38%的准确率。
1.安装
最好是使用 Linux 或 Mac 环境来安装,Windows 下安装会有很多问题。在安装 face_recognition 之前你需要先安装以下几个库,注意顺序!
1.1 先安装 cmake 和 boost
pip install cmake
pip install boost
1.2 安装 dlib
pip install dlib
此处安装可能要几分钟。如安装出错,建议使用 whl 文件来安装
1.3 安装 face_recognition
face_recongnition 一般要配合 opencv 一起使用
pip install face_recognition
pip install opencv-python
2. 人脸识别
比如这里总共有三张图片,其中有两张已知,第三张是需要识别的图片
首先获取人脸中的信息
kobe_image = face_recognition.load_image_file("kobe.jpg") # 已知科比照片
jordan_image = face_recognition.load_image_file("jordan.jpeg") # 已知乔丹照片
unknown_image = face_recognition.load_image_file("unkown.jpeg") # 未知照片
kobe_face_encoding = face_recognition.face_encodings(kobe_image)[0]
jordan_face_encoding = face_recognition.face_encodings(jordan_image)[0]
unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0]
代码中前三行分别是加载三张图片文件并返回图像的 numpy 数组,后三行返回图像中每个面部的人脸编码
然后将未知图片中的人脸和已知图片中的人脸进行对比,使用 compare_faces() 函数, 代码如下:
known_faces = [
kobe_face_encoding,
jordan_face_encoding
]
results = face_recognition.compare_faces(known_faces, unknown_face_encoding) # 识别结果列表
print("这张未知照片是科比吗? {}".format(results[0]))
print("这张未知照片是乔丹吗? {}".format(results[1]))
运行结果如下:
不到二十行代码,就能识别出人脸是谁,是不是 so easy!
3. 人脸标注
仅仅识别图片中的人脸总是感觉差点什么,那么将识别出来的人脸进行姓名标注是不是更加有趣~
已知图片的识别和前面代码基本是一样的,未知图片代码多了人脸位置的识别,并使用了face_locations() 函数。代码如下:
face_locations = face_recognition.face_locations(unknown_image)
face_encodings = face_recognition.face_encodings(unknown_image, face_locations)
函数传入两个参数,返回以上,右,下,左固定顺序的脸部位置列表的作用是将已知脸部位置和未知面部编码进行比较,得到欧式距离~~~具体是什么我也不知道,距离就相当于相识度。
函数说明:face_distance(face_encodings, face_to_compare)
face_encodings:已知的面部编码
本次图片前面两张没有变化,第三张换成了科比和乔丹的合影,最终运行之后结果如下:
左边是原图,右边是识别后自动标注出来的图片。
import face_recognition
from PIL import Image, ImageDraw
import numpy as np
def draws():
kobe_image = face_recognition.load_image_file("kobe.jpg")
kobe_face_encoding = face_recognition.face_encodings(kobe_image)[0]
jordan_image = face_recognition.load_image_file("jordan.jpeg")
jordan_face_encoding = face_recognition.face_encodings(jordan_image)[0]
known_face_encodings = [
kobe_face_encoding,
jordan_face_encoding
]
known_face_names = [
"Kobe",
"Jordan"
]
unknown_image = face_recognition.load_image_file("two_people.jpeg")
face_locations = face_recognition.face_locations(unknown_image)
face_encodings = face_recognition.face_encodings(unknown_image, face_locations)
pil_image = Image.fromarray(unknown_image)
draw = ImageDraw.Draw(pil_image)
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255))
text_width, text_height = draw.textsize(name)
draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255))
draw.text((left + 6, bottom - text_height - 5), name, fill=(255, 255, 255, 255))
del draw
pil_image.show()
pil_image.save("image_with_boxes.jpg")
4. 给人脸美妆
这个功能需要结合 PIL 一起使用。用法都差不多,首先就是将图片文件加载到 numpy 数组中,然后将人脸中的面部所有特征识别到一个列表中
image = face_recognition.load_image_file("bogute.jpeg")
face_landmarks_list = face_recognition.face_landmarks(image)
遍历列表中的元素,修改眉毛
d.polygon(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 128))
d.polygon(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 128))
d.line(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 150), width=5)
d.line(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 150), width=5)
给人脸涂口红
d.polygon(face_landmarks['top_lip'], fill=(150, 0, 0, 128))
d.polygon(face_landmarks['bottom_lip'], fill=(150, 0, 0, 128))
d.line(face_landmarks['top_lip'], fill=(150, 0, 0, 64), width=8)
d.line(face_landmarks['bottom_lip'], fill=(150, 0, 0, 64), width=8)
增加眼线
d.polygon(face_landmarks['left_eye'], fill=(255, 255, 255, 30))
d.polygon(face_landmarks['right_eye'], fill=(255, 255, 255, 30))
d.line(face_landmarks['left_eye'] + [face_landmarks['left_eye'][0]], fill=(0, 0, 0, 110), width=6)
d.line(face_landmarks['right_eye'] + [face_landmarks['right_eye'][0]], fill=(0, 0, 0, 110), wid=6)
根据以上代码做了,我用实力不行,打球又脏的 "大嘴" 博格特来做演示!
左边是原图,右边是加了美妆后的效果
你打球的样子像极了 cxk!
推荐阅读:
THANDKS
- End -
用 20 行 python 代码实现人脸识别!的更多相关文章
- 20行Python代码检测人脸是否佩戴口罩
最近,口罩成为绝对热门的话题,在疫情之下,出门不戴口罩不仅对自己不负责,对他人而言也是一种潜在的威胁.所以许多小区都有保安在门口守着,谁要是不戴口罩就吼回去(吓死我了). 很多人学习python,不知 ...
- [转]7行Python代码的人脸识别
https://blog.csdn.net/wireless_com/article/details/64120516 随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域 ...
- 25 行 Python 代码实现人脸识别——OpenCV 技术教程
OpenCV OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是 ...
- 7行Python代码的人脸识别
随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支.百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的A ...
- 20行Python代码开发植物识别 app
这篇文章介绍如何用Python快速实现一个植物识别的app,家里养了几盆多肉还叫不上名字,正好拿来识别一下.实现这样一个app只需要20行左右的代码,先来看下效果: 另外,我也开发了微信小程序版本,大 ...
- 15行python代码实现人脸识别
方法一:face_recognition import cv2 import face_recognition img_path = "C:/Users/CJK/Desktop/1.jpg& ...
- 30行Python代码实现人脸检测
参考OpenCV自带的例子,30行Python代码实现人脸检测,不得不说,Python这个语言的优势太明显了,几乎把所有复杂的细节都屏蔽了,虽然效率较差,不过在调用OpenCV的模块时,因为模块都是C ...
- 20行Python代码爬取王者荣耀全英雄皮肤
引言王者荣耀大家都玩过吧,没玩过的也应该听说过,作为时下最火的手机MOBA游戏,咳咳,好像跑题了.我们今天的重点是爬取王者荣耀所有英雄的所有皮肤,而且仅仅使用20行Python代码即可完成. 准备工作 ...
- 用Python在25行以下代码实现人脸识别
在本文中,我们将看到一种使用Python和开放源码库开始人脸识别的非常简单的方法. OpenCV OpenCV是最流行的计算机视觉库.最初是用C/C++编写的,现在它提供了Python的API. Op ...
随机推荐
- typescript 使用的几种情况
接口的创建 可以使用 type 和 interface 来创建类型 type 特有的优点: 声明基本类型别名,联合类型,元组等类型 type S = string; type IFoo = IBar ...
- Java线程池面试
New Thread的弊端 每次new Thread会新建对象,性能差 线程缺乏统一管理,可能无限制的新建线程,相互竞争,有可能占用过多系统资源导致死机或OOM 缺少更多功能,如更多执行.定期执行.线 ...
- idea发布web项目在tomcat位置问题
(1)war模式这种可以称之为是发布模式,看名字也知道,这是先打成war包,再发布. (2)war exploded模式是直接把文件夹.jsp页面 .classes等等移到Tomcat 部署文件夹里面 ...
- Java复习(二)类与对象的基本概念
2.1面向对象的程序设计方法概述 对象 程序中: 一切皆是对象 都具有标识,属性和行为 通过一个或多个变量来保存其状态 通过方法实现他的行为 类 将属性及行为相同或相似的对象归为一类 类可以看成是对象 ...
- Java面试宝典2017
JAVA面试.笔试题(2017版) 欲想成功,必须用功! 目录 一. HTML&CSS部分................ ...
- pip 通过pqi切换源到国内镜像
pip install pqipqi lspqi use aliyun # pqi use tuna 清华
- Lamda过滤替换List元素的属性值
import java.util.ArrayList;import java.util.HashMap;import java.util.Iterator;import java.util.List; ...
- svn http
yum install -y httpd subversion mod_dav_svn mkdir -p /var/lib/svn cd /var/lib/svn svnadmin create de ...
- J. Stone game(背包问题)
题:https://nanti.jisuanke.com/t/41420 定义 dp[x][y] 表示第 x 个数到最后一个数能组成和为 y 的方案数 #include<bits/stdc++. ...
- 估计量|估计值|置信度|置信水平|非正态的小样本|t分布|大样本抽样分布|总体方差|
5 估计量和估计值是什么? 估计量不是估计出来的量,是用于估计的量. 估计量:用于估计总体参数的随机变量,一般为样本统计量.如样本均值.样本比例.样本方差等.例如:样本均值就是总体均值的一个估计量. ...