ZOJ 3329 - One Person Game
题意:每次筛三个骰子面分别为k1,k2,k3,如果三个骰子的值分别为a,b,c则得分置0,否则得到分数加上三个骰子的值的和,如果得分大于等于n则结束游戏。
设E[i]表示当前得到i分时结束游戏的期望。
则E[i]=sum{Pk*(E[i+k]+1)|k为三个骰子可能取得的分数且不包括a,b,c这种情况}+1/(k1*k2*k3)(E[0]+1)
=sum{Pk*(E[i+k])}+1/(k1*k2*k3)*E[0]+1
这里出现了一个问题,之前的方程都是只与一个方向的有关,而这里E[i]与E[0]和E[i+k]有关, E[0]是E[i]的先前结点,而E[i+k]是E[i]的后置结点,因此无法使用DP解决这个问题。我们考虑消去一个变量,这里只有最后的结点E[n]是已知的,所以我们可以消去后置结点E[i+k]。这样假设E[i]=A[i]*E[0]+B[i],代入E[i+k],可得E[i]=sum{Pk*(A[i+k]*E[0]+B[i+k])}+1/(k1*k2*k3)*E[0]+1,进一步得E[i]=(sum{Pk*A[i+k]}+1/(k1*k2*k3))*E[0]+sum{Pk}*B[i+k]+1。
这样对应系数可得到A[i]=sum{Pk*A[i+k]}+1/(k1*k2*k3),B[i]=sum{Pk}*B[i+k]+1。
我们知道E[n]=0,所以A[n]=0,B[n]=0。
这样可以递推求出所有A[i]和B[i],这样也就能算出所有的E[i]了。
最终答案是E[0]。E[0]=A[0]*E[0]+B[0],所以E[0]=B[0]/(1-A[0])。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#define ll long long
#define MAXN 30005
using namespace std;
],B[];
];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,k1,k2,k3,a,b,c;
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
double r=1.0/(k1*k2*k3);
memset(A,,sizeof(A));
memset(B,,sizeof(B));
memset(pro,,sizeof(pro));
; i<=k1; ++i)
; j<=k2; ++j)
; k<=k3; ++k)
if(!(i==a&&j==b&&k==c))
pro[i+j+k]+=r;
int s=k1+k2+k3;
; --i)
{
; j<=s; ++j)
{
A[i]+=pro[j]*A[i+j];
B[i]+=pro[j]*B[i+j];
}
A[i]+=r;
B[i]++;
}
printf(]/(-A[]));
}
;
}
ZOJ 3329 - One Person Game的更多相关文章
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- ZOJ 3329 One Person Game (经典概率dp+有环方程求解)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意:现在有三个骰子,分别有k1,k2和k3面,面上的点就是1~ki ...
- ZOJ 3329 One Person Game:期望dp【关于一个点成环——分离系数】
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意: 给你面数分别为k1,k2,k3的三个骰子. 给定a ...
- ZOJ 3329 One Person Game 概率DP 期望 难度:2
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754 本题分数为0的概率不确定,所以不能从0这端出发. 设E[i]为到达成功所 ...
- ZOJ 3329 【概率DP】
题意: 给你三个均匀k面筛子. 分别有k1 k2 k3个面,每个面朝上的概率是相等的. 如果第一个筛子出现a第二个筛子出现b第三个筛子出现c那么置零. 否则在当前和加上三个点数之和. 求当前和大于n需 ...
- zoj 3329 One Person Game (有环 的 概率dp)
题目链接 这个题看的别人的思路,自己根本想不出来这种设方程的思路. 题意: 有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当 ...
- zoj 3329 One Person Game 概率DP
思路:这题的递推方程有点麻烦!! dp[i]表示分数为i的期望步数,p[k]表示得分为k的概率,p0表示回到0的概率: dp[i]=Σ(p[k]*dp[i+k])+dp[0]*p0+1 设dp[i]= ...
- ZOJ 3329 One Person Game 带环的概率DP
每次都和e[0]有关系 通过方程消去环 dp[i] = sigma(dp[i+k]*p)+dp[0]*p+1 dp[i] = a[i]*dp[0]+b[i] dp[i] = sigma(p*(a[i+ ...
- ZOJ 3329 One Person Game 【概率DP,求期望】
题意:有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当分数大于n时结束.求游戏的期望步数.初始分数为0 设dp[i]表示达到 ...
随机推荐
- Selenium Grid Configuration
Start Hub and Node with Json config 1. Start Hub with json config file title HubWebDriver java -jar ...
- Mybatis学习(贰)
一.类型别名typeAlias 1.在mapper文件中:实体作为resultType,多次书写在配置文件中,每次需要书写权限名(com.baizhi.yanxj.entity.User),代码比较繁 ...
- iOS 面试基础题目
转载: iOS 面试基础题目 题目来自博客:面试百度的记录,有些问题我能回答一下,不能回答的或有更好的回答我放个相关链接供参考. 1面 Objective C runtime library:Obje ...
- jmeter 建立一个网络服务的测试计划
如何创建一个 测试计划 测试一个网络服务. 你会 创建5个用户发送请求到一页. 同时,你会告诉用户运行测试两次. 的总数 请求用户请求(5)x(1)x(重复2次)= 10 HTTP请求. 来 建立测试 ...
- EasyDropDown – 很棒的下拉菜单 含精美主题
EasyDropDown 是一个 jQuery 插件,你可以毫不费力地将简陋的 Select 元素设置为可定制风格的下拉菜单,用于表单或者一般的导航.和著名的下拉插件 Chosen 很像,但是具有自己 ...
- MySQL 加锁处理分析
1 背景 1 1.1 MVCC:Snapshot Read vs Current Read 2 1.2 Cluster Index:聚簇索引 3 1.3 2P ...
- Pictures of Ascii Art
简述 指尖上的艺术 - 通过键盘上韵律般的敲敲打打,一幅幅美轮美奂的艺术作品便跃然于屏. 这样的画作,包含了无穷的创意,糅合了现代计算机科技与传统绘画艺术,难道还有比这更令人陶醉的美妙事物吗? 简述 ...
- hdu 4033Regular Polygon(二分+余弦定理)
Regular Polygon Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)T ...
- 怎么实现form表单提交后不重新刷新当前页面
怎么实现表单提交后不重新刷新当前页面 如何实现表单提交后不重新刷新当前页面 <form name='form1' id='form1' action='/xbcw/cw/xx_xx.ac ...
- springmvc 配置直接访问页面
<mvc:view-controller path="/" view-name="/home"/> 在mvc中配置,访问路径就可以了