题意:每次筛三个骰子面分别为k1,k2,k3,如果三个骰子的值分别为a,b,c则得分置0,否则得到分数加上三个骰子的值的和,如果得分大于等于n则结束游戏。

设E[i]表示当前得到i分时结束游戏的期望。

则E[i]=sum{Pk*(E[i+k]+1)|k为三个骰子可能取得的分数且不包括a,b,c这种情况}+1/(k1*k2*k3)(E[0]+1)

=sum{Pk*(E[i+k])}+1/(k1*k2*k3)*E[0]+1

这里出现了一个问题,之前的方程都是只与一个方向的有关,而这里E[i]与E[0]和E[i+k]有关, E[0]是E[i]的先前结点,而E[i+k]是E[i]的后置结点,因此无法使用DP解决这个问题。我们考虑消去一个变量,这里只有最后的结点E[n]是已知的,所以我们可以消去后置结点E[i+k]。这样假设E[i]=A[i]*E[0]+B[i],代入E[i+k],可得E[i]=sum{Pk*(A[i+k]*E[0]+B[i+k])}+1/(k1*k2*k3)*E[0]+1,进一步得E[i]=(sum{Pk*A[i+k]}+1/(k1*k2*k3))*E[0]+sum{Pk}*B[i+k]+1。

这样对应系数可得到A[i]=sum{Pk*A[i+k]}+1/(k1*k2*k3),B[i]=sum{Pk}*B[i+k]+1。

我们知道E[n]=0,所以A[n]=0,B[n]=0。

这样可以递推求出所有A[i]和B[i],这样也就能算出所有的E[i]了。

最终答案是E[0]。E[0]=A[0]*E[0]+B[0],所以E[0]=B[0]/(1-A[0])。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#define ll long long
#define MAXN 30005
using namespace std;
],B[];
];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n,k1,k2,k3,a,b,c;
        scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
        double r=1.0/(k1*k2*k3);
        memset(A,,sizeof(A));
        memset(B,,sizeof(B));
        memset(pro,,sizeof(pro));
        ; i<=k1; ++i)
            ; j<=k2; ++j)
                ; k<=k3; ++k)
                    if(!(i==a&&j==b&&k==c))
                        pro[i+j+k]+=r;
        int s=k1+k2+k3;
        ; --i)
        {
            ; j<=s; ++j)
            {
                A[i]+=pro[j]*A[i+j];
                B[i]+=pro[j]*B[i+j];
            }
            A[i]+=r;
            B[i]++;
        }
        printf(]/(-A[]));
    }
    ;
}

ZOJ 3329 - One Person Game的更多相关文章

  1. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  2. ZOJ 3329 One Person Game (经典概率dp+有环方程求解)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意:现在有三个骰子,分别有k1,k2和k3面,面上的点就是1~ki ...

  3. ZOJ 3329 One Person Game:期望dp【关于一个点成环——分离系数】

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意: 给你面数分别为k1,k2,k3的三个骰子. 给定a ...

  4. ZOJ 3329 One Person Game 概率DP 期望 难度:2

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754 本题分数为0的概率不确定,所以不能从0这端出发. 设E[i]为到达成功所 ...

  5. ZOJ 3329 【概率DP】

    题意: 给你三个均匀k面筛子. 分别有k1 k2 k3个面,每个面朝上的概率是相等的. 如果第一个筛子出现a第二个筛子出现b第三个筛子出现c那么置零. 否则在当前和加上三个点数之和. 求当前和大于n需 ...

  6. zoj 3329 One Person Game (有环 的 概率dp)

    题目链接 这个题看的别人的思路,自己根本想不出来这种设方程的思路. 题意: 有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当 ...

  7. zoj 3329 One Person Game 概率DP

    思路:这题的递推方程有点麻烦!! dp[i]表示分数为i的期望步数,p[k]表示得分为k的概率,p0表示回到0的概率: dp[i]=Σ(p[k]*dp[i+k])+dp[0]*p0+1 设dp[i]= ...

  8. ZOJ 3329 One Person Game 带环的概率DP

    每次都和e[0]有关系 通过方程消去环 dp[i] = sigma(dp[i+k]*p)+dp[0]*p+1 dp[i] = a[i]*dp[0]+b[i] dp[i] = sigma(p*(a[i+ ...

  9. ZOJ 3329 One Person Game 【概率DP,求期望】

    题意:有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当分数大于n时结束.求游戏的期望步数.初始分数为0 设dp[i]表示达到 ...

随机推荐

  1. Unity3d多线程

    http://blog.csdn.net/dingkun520wy/article/details/49181645 (一)多线程的创建 Thread t = new Thread(new Threa ...

  2. 为什么MySQL死锁检测会严重降低TPS

    在大量的客户端,更新数据表的同一行时,会造成数据库的吞吐量大幅降低. 很多数据库的前辈和同行分别通过实验和源码的方法,定位到了罪魁祸首----MySQL死锁检测 实验方式:http://blog.cs ...

  3. VBA对象模型(2)

    Excel对象模型简介 在介绍Excel对象模型之前,让我们先来看一个简单的例子.大多数工厂都是按这样的结构进行设置的:最上层为工厂总部,第二层次分为各个车间,在车间下面又分各班组.就这样组织在一起, ...

  4. hdu 4315 Climbing the Hill(阶梯博弈转nim博弈)

    Climbing the Hill Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. Eclipse启动tomcat 报“ A child container failed during start”

    org.apache.catalina.LifecycleException: Failed to start component [StandardServer[8005]]   at org.ap ...

  6. css——子代与后代选择器

    一直都以为,子代选择器与后代选择器作用是一样的,都是选择一个元素下面的子元素,直到今天才明白: 1.子代选择器(用<连接):ul>li 子选择器仅仅选择ul包围的 子元素 中的 li元素, ...

  7. ...python の 学习

    5.14 ...上次学python 好像是一个月前.. 写点东西记录下叭.. 现在在看李老大写的博客写..可能直接开抄代码... 感觉自己写的总是爬不成功,之前写的爬豆瓣影评的爬虫还是残的... 1. ...

  8. 使用js给页面显示的图片添加水印效果

    功能描述:使用Jquery 给页面的图片添加 版权信息水印. 这里的水印并不是真的把每一张图片上都添加了水印.而是在图片的上方添加了一个层,层中包含了水印图片效果就像是图片上加了水印. 功能原理:1, ...

  9. linux copy

    cp -ri 131115-6/* /web/www/attachment/  把13这个文件夹下面所有的文件和文件夹复制到 /web/www/attachment cp -a  a  /web/ww ...

  10. Octopus系列之接下来的任务

    更新默认国家[已实现] 更新每页显示条数的后台控制[已实现] 更新国家和区域的Ajax的关联[已实现] 更新详情页面的 属性选择 脚本提示[已实现 可以做到和兰亭一样的效果了] 增加优惠方案的设置和批 ...