Binary Stirling Numbers
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 1761   Accepted: 671

Description

The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts:

{1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}

{1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.

There is a recurrence which allows to compute S(n, m) for all m and n.

S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;

S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.

Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2.

Example

S(4, 2) mod 2 = 1.

Task

Write a program which for each data set: 
reads two positive integers n and m, 
computes S(n, m) mod 2, 
writes the result. 

Input

The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 200. The data sets follow.

Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9.

Output

The output should consist of exactly d lines, one line for each data set. Line i, 1 <= i <= d, should contain 0 or 1, the value of S(ni, mi) mod 2.

Sample Input

1
4 2

Sample Output

1

Source

可以转化成求C(N,M)来做。当然不是直接转化。

打出表看一下,发现是有规律的。

每一列都会重复一次。打表看一下吧。

思路:

     s(n,m)   如果m是偶数  n=n-1; m=m-1;==>转化到它的上一个s(n-1,m-1);

k=(m+1)/2;  n=n-k; m=m-k;求C(n,m)的奇偶性就可以了。(当然有很多书写方式,不一定要这样做。)

测试用的

 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; int dp[][];
int cnm[][];
void init()
{
int i,j;
dp[][]=;
for(i=;i<=;i++) dp[i][]=;
for(i=;i<=;i++)
for(j=;j<=i;j++)
dp[i][j]=dp[i-][j-]+dp[i-][j]*j;
for(i=;i<=;i++)
{
for(j=;j<=i;j++)
printf("%d ",(dp[i][j]&));
printf("\n");
} cnm[][]=;
for(i=;i<=;i++)
{
cnm[i][]=;
cnm[][i]=;
}
for(i=;i<=;i++)
{
for(j=;j<=i;j++)
{
if(j==) cnm[i][j]=i;
else if(i==j) cnm[i][j]=;
else cnm[i][j]=cnm[i-][j]+cnm[i-][j-];
}
}
for(i=;i<=;i++)
{
for(j=;j<=i;j++)
printf("%d ",cnm[i][j]&);
printf("\n");
}
}
int main()
{
init();
int n,m;
while(scanf("%d%d",&n,&m)>)
{
printf("%d\n",dp[n][m]);
}
return ;
}

ac代码

 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; int a[],alen;
int b[],blen;
void solve(int n,int m)
{
int i;
bool flag=false;
alen=;
blen=;
memset(a,,sizeof(a));
memset(b,,sizeof(b));
while(n)
{
a[++alen]=(n&);
n=n>>;
}
while(m)
{
b[++blen]=(m&);
m=m>>;
}
for(i=; i<=alen; i++)
{
if(a[i]== && b[i]==) flag=true;
if(flag==true) break;
}
if(flag==true)printf("0\n");
else printf("1\n");
}
int main()
{
int T;
int n,m,k;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
if(m%==)
{
n=n-;
m=m-;
}
k=(m+)/;
solve(n-k,m-k);
}
return ;
}

poj 1430 Binary Stirling Numbers的更多相关文章

  1. POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)

    题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1 ...

  2. poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题

    题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...

  3. POJ1430 Binary Stirling Numbers

    @(POJ)[Stirling數, 排列組合, 數形結合] Description The Stirling number of the second kind S(n, m) stands for ...

  4. Binary Stirling Numbers

    http://poj.org/problem?id=1430 题目: 求 第二类 斯特林数 的 奇偶性  即 求 s2 ( n , m ) % 2 : 题解: https://blog.csdn.ne ...

  5. UVALIVE 2431 Binary Stirling Numbers

    转自别人的博客.这里记录一下 这题是定义如下的一个数: S(0, 0) = 1; S(n, 0) = 0 for n > 0;S(0, m) = 0 for m > 0; S(n, m) ...

  6. 【poj1430】Binary Stirling Numbers(斯特林数+组合数)

    传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...

  7. POJ 3252:Round Numbers

    POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...

  8. 笛卡尔树 POJ ——1785 Binary Search Heap Construction

    相应POJ 题目:点击打开链接 Binary Search Heap Construction Time Limit: 2000MS   Memory Limit: 30000K Total Subm ...

  9. POJ - 3252 A - Round Numbers

    The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' ...

随机推荐

  1. [转]有哪些值得关注的技术博客(Java篇)

    有哪些值得关注的技术博客(Java篇)   大部分程序员在自学的道路上不知道走了多少坑,这个视频那个网站搞得自己晕头转向.对我个人来说我平常在学习的过程中喜欢看一些教程式的博客.这些博客的特点: 1. ...

  2. android 单例模式

    单例模式特点: 1.一个类只能有一个实例 2.自己创建这个实例 3.整个系统都要使用这个实例 单例模式的形式: 1.饿汉式单例类 public class Singleton { private Si ...

  3. bzoj3192 [JLOI2013]删除物品

    用数组表示两个栈,将两个栈的栈顶并在一起,用树状数组维护一下操作即可. 代码 #include<cstdio> #include<algorithm> #include< ...

  4. sql set xact_abort on 用例

    set xact_abort on 设置事务回滚的当为ON时,如果你存储中的某个地方出了问题,整个事务中的语句都会回滚为OFF时,只回滚错误的地方 例子 : ALTER proc [dbo].[BuC ...

  5. 最懂中文的H5前端框架amazeUI

    Amaze UI 是一个轻量级(所有 CSS 和 JS gzip 后 100 kB 左右)的前端框架, 基于开源社区流行前端框架编写 amazeUI的网址:http://amazeui.org/get ...

  6. php防sql注入

    [一.在服务器端配置] 安全,PHP代码编写是一方面,PHP的配置更是非常关键. 我 们php手手工安装的,php的默认配置文件在 /usr/local/apache2/conf/php.ini,我们 ...

  7. 嵌套错误Inline markup blocks (@<p>Content</p>) cannot be nested. Only one level of inline markup is allowed

    例子: @{Html.Telerik().Splitter().Name("MainSplitter") .Orientation(SplitterOrientation.Vert ...

  8. android 项目学习随笔九(ListView加头布局)

    1.缓冲背景色 <ListView android:id="@+id/lv_list" android:layout_width="match_parent&quo ...

  9. android 学习随笔二十五(动画:补间动画)

    补间动画(TweenAnimation) * 原形态变成新形态时为了过渡变形过程,生成的动画就叫补间动画(为了让对象从初始状态向结束状态改变的过程更加自然而自动生成的动画效果)* 位移.旋转.缩放.透 ...

  10. 前端不为人知的一面–前端冷知识集锦 原文地址(http://web.jobbole.com/83473/);

    前端已经被玩儿坏了!像console.log()可以向控制台输出图片等炫酷的玩意已经不是什么新闻了,像用||操作符给变量赋默认值也是人尽皆知的旧闻了,今天看到Quora上一个帖子,瞬间又GET了好多前 ...