poj 1430 Binary Stirling Numbers
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 1761 | Accepted: 671 |
Description
{1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}
{1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.
There is a recurrence which allows to compute S(n, m) for all m and n.
S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;
S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.
Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2.
Example
S(4, 2) mod 2 = 1.
Task
Write a program which for each data set:
reads two positive integers n and m,
computes S(n, m) mod 2,
writes the result.
Input
Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9.
Output
Sample Input
1
4 2
Sample Output
1
Source
可以转化成求C(N,M)来做。当然不是直接转化。
打出表看一下,发现是有规律的。
每一列都会重复一次。打表看一下吧。
思路:
s(n,m) 如果m是偶数 n=n-1; m=m-1;==>转化到它的上一个s(n-1,m-1);
k=(m+1)/2; n=n-k; m=m-k;求C(n,m)的奇偶性就可以了。(当然有很多书写方式,不一定要这样做。)
测试用的
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; int dp[][];
int cnm[][];
void init()
{
int i,j;
dp[][]=;
for(i=;i<=;i++) dp[i][]=;
for(i=;i<=;i++)
for(j=;j<=i;j++)
dp[i][j]=dp[i-][j-]+dp[i-][j]*j;
for(i=;i<=;i++)
{
for(j=;j<=i;j++)
printf("%d ",(dp[i][j]&));
printf("\n");
} cnm[][]=;
for(i=;i<=;i++)
{
cnm[i][]=;
cnm[][i]=;
}
for(i=;i<=;i++)
{
for(j=;j<=i;j++)
{
if(j==) cnm[i][j]=i;
else if(i==j) cnm[i][j]=;
else cnm[i][j]=cnm[i-][j]+cnm[i-][j-];
}
}
for(i=;i<=;i++)
{
for(j=;j<=i;j++)
printf("%d ",cnm[i][j]&);
printf("\n");
}
}
int main()
{
init();
int n,m;
while(scanf("%d%d",&n,&m)>)
{
printf("%d\n",dp[n][m]);
}
return ;
}
ac代码
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; int a[],alen;
int b[],blen;
void solve(int n,int m)
{
int i;
bool flag=false;
alen=;
blen=;
memset(a,,sizeof(a));
memset(b,,sizeof(b));
while(n)
{
a[++alen]=(n&);
n=n>>;
}
while(m)
{
b[++blen]=(m&);
m=m>>;
}
for(i=; i<=alen; i++)
{
if(a[i]== && b[i]==) flag=true;
if(flag==true) break;
}
if(flag==true)printf("0\n");
else printf("1\n");
}
int main()
{
int T;
int n,m,k;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
if(m%==)
{
n=n-;
m=m-;
}
k=(m+)/;
solve(n-k,m-k);
}
return ;
}
poj 1430 Binary Stirling Numbers的更多相关文章
- POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)
题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1 ...
- poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题
题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...
- POJ1430 Binary Stirling Numbers
@(POJ)[Stirling數, 排列組合, 數形結合] Description The Stirling number of the second kind S(n, m) stands for ...
- Binary Stirling Numbers
http://poj.org/problem?id=1430 题目: 求 第二类 斯特林数 的 奇偶性 即 求 s2 ( n , m ) % 2 : 题解: https://blog.csdn.ne ...
- UVALIVE 2431 Binary Stirling Numbers
转自别人的博客.这里记录一下 这题是定义如下的一个数: S(0, 0) = 1; S(n, 0) = 0 for n > 0;S(0, m) = 0 for m > 0; S(n, m) ...
- 【poj1430】Binary Stirling Numbers(斯特林数+组合数)
传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...
- POJ 3252:Round Numbers
POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...
- 笛卡尔树 POJ ——1785 Binary Search Heap Construction
相应POJ 题目:点击打开链接 Binary Search Heap Construction Time Limit: 2000MS Memory Limit: 30000K Total Subm ...
- POJ - 3252 A - Round Numbers
The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' ...
随机推荐
- Codeforce Round #226 Div2
这次CF虽然,但是- - 第一题看了很久的题目意思额,虽然慢了点- -,但还算没出错,还学会了hack了- -,还+了100- - 第二题想了很久- -...后来发现可以暴力- -,哎 第三题本来也应 ...
- 转:Python获取随机数(英文)
Random - Generate pseudo-random numbers Source code: Lib/random.py This module implements pseudo-ran ...
- 转:python socket编程详细介绍
Python 提供了两个基本的 socket 模块. 第一个是 Socket,它提供了标准的 BSD Sockets API. 第二个是 SocketServer, 它提供了服务器中心类,可以简化网络 ...
- android中在代码中设置margin属性
1,不多说,小知识点,直接上代码 LinearLayout.LayoutParams layoutParams = new LinearLayout.LayoutParams(15, 15);// 创 ...
- oracle的散列聚簇表
在簇表中,Oracle使用存储在索引中的键值来定位表中的行, 而在散列聚簇表中,使用了散列函数代替了簇索引,先通过内部函数或者自定义的函数进行散列计算,然后再将计算得到的码值用于定位表中的行. 创建散 ...
- Mysql触发器总结
触发器(trigger):监视某种情况,并触发某种操作. 触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/befo ...
- 夺命雷公狗---DEDECMS----10dedecms双标签
双标签基本语法如下: {dede:标签名 参数名=“值” 参数名2=“值”...} 内容...... {/dede} 我们先来查看下手册,如下所示: 我们先来用一个channel的标签来做实例,因为c ...
- 夺命雷公狗---微信开发53----网页授权(oauth2.0)获取用户基本信息接口(3)实现世界留言版
前面两节课我们讲的是base型的授权了,那么现在我们开始Userinfo型授权, 先来看下我们的原理图 我们这节课来做一个 世界留言版 系统 1..首先我还是在微信测试平台那里设置好回调页面的域名 2 ...
- python入门语法总结 zz
http://renjie120.iteye.com/blog/680126 1.python是一个解释性语言: 一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个你的计 ...
- ThinkPHP讲解(二)控制器
在这一节,具体讲解控制器,以Jiaowu应用目录为例. 1.如何写控制器,如何写操作方法? 在模块控制器目录Controller下新建一个控制器文件MainController.class.php,写 ...