POJ 3181 Dollar Dayz (完全背包,大数据运算)
题意:给出两个数,n,m,问1~m中的数组成n,有多少种方法?
这题其实就相当于 UVA 674 Coin Change,求解一样
只不过数据很大,需要用到高精度运算。。。
后来还看了网上别人的解法,是将大数转化成高位和低位两部分处理
代码一:用数组存储数据的每个位
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std;
const int maxn=;
long long dp[maxn][]; //增加一维存储每一位的数
int n,k;
int main() { while(scanf("%d%d",&n,&k)!=EOF) {
memset(dp,,sizeof(dp));
dp[][]=;
for(int i=; i<=k; i++) {
for(int j=i; j<maxn; j++) {
//原本就直接写了dp[j]+=dp[j-i],不WA才怪了。。。
for(int z=;z<;z++){
dp[j][z]=dp[j][z]+dp[j-i][z];
if(dp[j][z]>){
dp[j][z]-=;
dp[j][z+]++;
}
}
}
}
int idx=;
while(dp[n][idx]==)
idx--;
for(int i=idx;i>=;i--)
printf("%d",dp[n][i]);
printf("\n");
}
return ;
}
代码二:将大数分成两部分,高位部分和低位部分
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std;
const long long mod=;
const int maxn=;
long long dphigh[maxn]; //一个数的高位部分
long long dplow[maxn]; //一个数的低位部分
int n,k;
int main() { while(scanf("%d%d",&n,&k)!=EOF) {
memset(dphigh,,sizeof(dphigh));
memset(dplow,,sizeof(dplow));
dplow[]=;
for(int i=; i<=k; i++) {
for(int j=i; j<maxn; j++) {
dphigh[j]+=dphigh[j-i];
dplow[j]+=dplow[j-i];
dphigh[j]+=(dplow[j])/mod;
dplow[j]=dplow[j]%mod;
}
}
if(dphigh[n])
printf("%I64d",dphigh[n]);
printf("%I64d\n",dplow[n]);
}
return ;
}
POJ 3181 Dollar Dayz (完全背包,大数据运算)的更多相关文章
- POJ 3181 Dollar Dayz(全然背包+简单高精度加法)
POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自 ...
- POJ 3181 Dollar Dayz ( 完全背包 && 大数高精度 )
题意 : 给出目标金额 N ,问你用面额 1~K 拼成 N 的方案有多少种 分析 : 完全背包的裸题,完全背包在 DP 的过程中实际就是列举不同的装填方案数来获取最值的 故状态转移方程为 dp[i] ...
- POJ 3181 Dollar Dayz && Uva 147 Dollars(完全背包)
首先是 Uva 147:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_p ...
- poj 3181 Dollar Dayz(完全背包)
Dollar Dayz Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5419 Accepted: 2054 Descr ...
- poj 3181 Dollar Dayz(求组成方案的背包+大数)
可能nyist看见加的背包专题我老去凑热闹,觉得太便宜我了.他们新加的搜索专题居然有密码. 都是兄弟院校嘛!何必那么小气. 回到正题,跟我写的上一篇关于求组成方案的背包思路基本一样,无非就是一个二维费 ...
- POJ 3181 Dollar Dayz 【完全背包】
题意: 给出两个数,n,m,问m以内的整数有多少种组成n的方法完全背包+大数划分 思路: dp[i][j] := 用i种价格配出金额j的方案数. 那么dp[i][0] = 1,使用任何价格配出金额0的 ...
- POJ 3181 Dollar Dayz(高精度 动态规划)
题目链接:http://poj.org/problem?id=3181 题目大意:用1,2...K元的硬币,凑成N元的方案数. Sample Input 5 3 Sample Output 5 分析: ...
- poj 3181 Dollar Dayz (整数划分问题---递归+DP)
题目:http://poj.org/problem?id=3181 思路:将整数N划分为一系列正整数之和,最大不超过K.称为整数N的K划分. 递归:直接看代码: 动态规划:dp[i][j]:=将整数i ...
- POJ 3181 Dollar Dayz 01全然背包问题
01全然背包问题. 主要是求有多少种组合.二维dp做的人多了,这里使用一维dp就能够了. 一维的转换方程:dp[j] = dp[j-i] + dp[j];当中i代表重量,j代表当前背包容量. 意思就是 ...
随机推荐
- 自学Python二 Python中的屠龙刀(续)
函数 秉承着一切皆对象的理念,函数作为对象,可以为其赋值新的对象名,也可以作为参数传递给其他函数! 正常的诸如空函数,默认参数等等我们就不提了,在这里着重提一下默认参数里面的坑和lambda函数. 当 ...
- Nunit单元测试的使用
先建立一个需要测试的项目 安装nunit 通过nuget安装Install-Package Nunit 类前加[TestFixture] 要测试的方法前加[Test] using System; u ...
- hud 2586 How far away ?
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Description There are n houses in ...
- JavaScript高级程序设计之元素大小
1.偏移量 // 元素相对于文档的偏移量 var getOffSet = function (ele) { var actualLeft = ele.offsetLeft, // 相对于offsetP ...
- TFS使用指南
上一篇文章已经简略介绍过TFS的安装与管理,本篇文章主要描述一下我个人在工作过程中使用TFS的一些指南与建议.本章内容预览: 1. 项目计划与跟踪 经常有很多朋友在日常聊天中抱怨做计划很无畏,因为计 ...
- [转]流媒体协议介绍(rtp/rtcp/rtsp/rtmp/mms/hls)
[转]流媒体协议介绍(rtp/rtcp/rtsp/rtmp/mms/hls) http://blog.csdn.net/tttyd/article/details/12032357 RTP ...
- SqlParameter[] 添加
protected void Button1_Click(object sender, EventArgs e) { string strSql="insert into Invoice_R ...
- 从烙铁手到IT男
时间:2015年8月27日 21:37:44 作者:luomg 摘要: 简要记录一写自己干的这个行当,多少是个回忆,不然某一天呜呼哀哉了啥也没有记录,会随着时间更新(大学时熬夜绘制了很多altium ...
- urllib3 ConnectionPools
A connection pool is a container for a collection of connections to a specific host.If you need to m ...
- String、StringBuffer与StringBuilder的区别
String 字符串常量StringBuffer 字符串变量(线程安全)StringBuilder 字符串变量(非线程安全) 简要的说, String 类型和 StringBuffer 类型的主要性能 ...