(转)Fibonacci Tilings
Fibonacci numbers {Fn, n ≥ 0} satisfy the recurrence relation
along with the initial conditions F1 = 1 and F0 = 0.
The Fibonacci name has been attached to the sequence 0, 1, 1, 2, 3, 5, ... due to the inclusion in his 1202 book Liber Abaci of a rabbit reproduction puzzle: under certain constraints the rabbit population at discrete times is given exactly by that sequence. As naturally, the sequence is simulated by counting the tilings with dominoes of a 2×n board:

A tiling of a 2×n board may end with two horizontal dominoes or a single vertical domino:

In the former case, it's an extension of a tiling of a 2×(n-2) board; in the latter case, it's an extension of a tiling of a 2×(n-1). If Tn denotes the number of domino tilings of a 2×n board, then clearly
Tn = Tn-2 + Tn-1
which is the same recurrence relation that is satisfied by the Fibonacci sequence. By a direct verification, T1 = 1, T2 = 2, T3 = 3, T4 = 5, etc., which shows that {Tn} is nothing but a shifted Fibonacci sequence. If we define, T0 = 1, as there is only 1 way to do nothing; and T-1 = 0, because there are no boards with negative side lengths, then Fn = Tn-1, for n ≥ 0.
The domino tilings are extensively used in Graham, Knuth, Patashnik and by Zeitz. Benjamin & Quinn economize by considering only an upper 1×n portion of the board (and its tilings). This means tiling a 1×n board with 1×1 and 1×2 pieces.
I'll use Benjamin & Quinn's frugal tilings to prove Cassini's Identity
Fn+1·Fn+1 - Fn·Fn+2 = (-1)n
In terms of the tilings, I want to prove that Tn·Tn - Tn-1·Tn+1 = (-1)n.
The meaning of the term Tn·Tn is obvious: this is the number of ways to tile two 1×n boards where the tilings of the two boards are independent of each other. Similarly, Tn-1Tn+1 is the number of ways to tile two boards: one 1×(n-1) and one 1×(n+1). Now, the task is to retrieve the relation between the two numbers annunciated by Cassini's identity.
Our setup consists of two 1×n boards:

with the bottom board shifted one square to the right:

The tilings of the two boards may or may not have a fault line. A fault line is a line on the two boards at which the two tilings are breakable. For example, the tilings below have three fault lines:

The trick is now to swap tails: the pieces of the two tilings (along with the boards) after the last fault line:

Since the bottom board has been shifted just one square, the swap produces one tiling of a 1×(n+1) - the top board in the diagram - and one tiling of a 1×(n-1) board - the bottom board in the diagram. Note that the old faults have been preserved and no new faults have been introduced.
Thus, in the presence of faults, there is a 1-1 correspondence between two n-tilings (Tn) and a pair of (n-1)- and (n+1)-tilings. The time is to account for the faultless combinations, if any.
But there are. Any 1×1 square induces a fault. This leaves exactly two faultless tilings. If n is odd, both n-1 and n+1 are even, there is a unique pair of (n-1)- and (n+1)-tilings:

If n is even, there is a unique n-tiling that, when shifted, generates no fault lines:


References
- A. T. Benjamin, J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, MAA, 2003
- R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics, 2nd edition, Addison-Wesley, 1994.
- P. Zeitz, The Art and Craft of Problem Solving, John Wiley & Sons, 1999
Related material
|
|
|Contact| |Front page| |Contents| |Algebra| |Store|
Copyright © 1996-2011 Alexander Bogomolny
本文转自:
http://www.cut-the-knot.org/arithmetic/combinatorics/FibonacciTilings.shtml
(转)Fibonacci Tilings的更多相关文章
- 算法与数据结构(九) 查找表的顺序查找、折半查找、插值查找以及Fibonacci查找
今天这篇博客就聊聊几种常见的查找算法,当然本篇博客只是涉及了部分查找算法,接下来的几篇博客中都将会介绍关于查找的相关内容.本篇博客主要介绍查找表的顺序查找.折半查找.插值查找以及Fibonacci查找 ...
- #26 fibonacci seqs
Difficulty: Easy Topic: Fibonacci seqs Write a function which returns the first X fibonacci numbers. ...
- 关于java的递归写法,经典的Fibonacci数的问题
经典的Fibonacci数的问题 主要想展示一下迭代与递归,以及尾递归的三种写法,以及他们各自的时间性能. public class Fibonacci { /*迭代*/ public static ...
- 斐波拉契数列(Fibonacci) 的python实现方式
第一种:利用for循环 利用for循环时,不涉及到函数,但是这种方法对我种小小白来说比较好理解,一涉及到函数就比较抽象了... >>> fibs = [0,1] >>&g ...
- fibonacci数列(五种)
自己没动脑子,大部分内容转自:http://www.jb51.net/article/37286.htm 斐波拉契数列,看起来好像谁都会写,不过它写的方式却有好多种,不管用不用的上,先留下来再说. 1 ...
- POJ3070 Fibonacci[矩阵乘法]
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
- Fibonacci 数列算法分析
/************************************************* * Fibonacci 数列算法分析 ****************************** ...
- 算法系列:Fibonacci
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
- 2016 Multi-University Training Contest 1 I. Solid Dominoes Tilings
Solid Dominoes Tilings Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/O ...
随机推荐
- Ubuntu下部署java JDK和eclipse IDE
安装Java编程开发环境: Ubuntu默认安装openjava,可以通过java -version查看是否安装.但我使用Ubuntu9.10升级到10.04LTS时,openjava没有了.另外,如 ...
- .NET开源工作流RoadFlow-流程设计-流程步骤设置-策略设置
策略设置包括当前步骤的流转方式,处理人员,退回策略等设置. 流转类型:当前步骤后面有多个步骤时,此类型选择可以决定后续步骤的发送方式. 1.系统控制:由系统根据您在线上设置的流转条件来判断该发送到哪一 ...
- Tomcat 服务器服务的注册修改删除
1. 注册Tomcat服务 运行cmd,切换目录到tomcat/bin, 执行以下命令service.bat install 2.删除Tomcat服务
- Xcode7 beta 网络请求报错:The resource could not be loaded because the App Transport Security policy requires the use of a secure connection.
Xcode7 beta 网络请求报错:The resource could not be loaded because the App Transport Xcode7 beta 网络请求报错:The ...
- IOS中的UINavigationController(导航控制器)
UINavigationController UINavigationControlle:导航控制器,是iOS中最常用的多视图控制器之一,它用来管理多个试图控制器 导航控制器可以认为是管理控制器的控制 ...
- Linux 系统Telnet服务
Linux 系统Telnet服务 telnet与ssh相比,安全性能并不高,但是在ssh版本升级或者其他的情况下还是需要开启这一项服务.linux提供服务是由运行在后台的守护进程daemon来执行的, ...
- Machine Learning 学习笔记 (4) —— 广义线性模型
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 指数分布族简介 之前的文章分 ...
- cocos中常用到的单例模式
单例:即只有一个类对象,且提供全局的访问权限 特点: 1.构造函数私有 2.私有的静态成员指针,标识是否已产生了单例实例 3.提供一个getInstance()方法来获取单例对象 下面已打飞机中的子弹 ...
- 结队开发项目——基于Android的无线点餐系统——NABC模型
特点:通过提前订餐,可以节约学生大量的排队时间. N(need):生活中可以发现许多同学都喜欢出去买饭,而且在有的摊位需要排很长时间的队,这样他们就会很晚吃到饭,下午有课的学生都不能睡午觉,所以通过我 ...
- android开发,socket发送文件,read阻塞,得不到文件尾-1
这是我的接收文件代码:开始可以读取到-1,但是现在又读取不到了,所以才加上红色字解决的(注释的代码) File file = new File(mfilePath,"chetou." ...