VGG-19 和 VGG-16 的 prototxt文件
 

VGG-19 和 VGG-16 的 prototxt文件

VGG-16:
prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md
caffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel

VGG-19:
prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md
caffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel

VGG_16.prototxt 文件:

name: "VGG_ILSVRC_19_layer"

layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
} image_data_param {
batch_size: 12
source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt"
root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/"
}
} layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
}
image_data_param {
batch_size: 10
source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt"
root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/"
}
} layer {
bottom:"data"
top:"conv1_1"
name:"conv1_1"
type:"Convolution"
convolution_param {
num_output:64
pad:1
kernel_size:3
}
}
layer {
bottom:"conv1_1"
top:"conv1_1"
name:"relu1_1"
type:"ReLU"
}
layer {
bottom:"conv1_1"
top:"conv1_2"
name:"conv1_2"
type:"Convolution"
convolution_param {
num_output:64
pad:1
kernel_size:3
}
}
layer {
bottom:"conv1_2"
top:"conv1_2"
name:"relu1_2"
type:"ReLU"
}
layer {
bottom:"conv1_2"
top:"pool1"
name:"pool1"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size:2
stride:2
}
}
layer {
bottom:"pool1"
top:"conv2_1"
name:"conv2_1"
type:"Convolution"
convolution_param {
num_output:128
pad:1
kernel_size:3
}
}
layer {
bottom:"conv2_1"
top:"conv2_1"
name:"relu2_1"
type:"ReLU"
}
layer {
bottom:"conv2_1"
top:"conv2_2"
name:"conv2_2"
type:"Convolution"
convolution_param {
num_output:128
pad:1
kernel_size:3
}
}
layer {
bottom:"conv2_2"
top:"conv2_2"
name:"relu2_2"
type:"ReLU"
}
layer {
bottom:"conv2_2"
top:"pool2"
name:"pool2"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size:2
stride:2
}
}
layer {
bottom:"pool2"
top:"conv3_1"
name: "conv3_1"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_1"
top:"conv3_1"
name:"relu3_1"
type:"ReLU"
}
layer {
bottom:"conv3_1"
top:"conv3_2"
name:"conv3_2"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_2"
top:"conv3_2"
name:"relu3_2"
type:"ReLU"
}
layer {
bottom:"conv3_2"
top:"conv3_3"
name:"conv3_3"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_3"
top:"conv3_3"
name:"relu3_3"
type:"ReLU"
}
layer {
bottom:"conv3_3"
top:"conv3_4"
name:"conv3_4"
type:"Convolution"
convolution_param {
num_output:256
pad:1
kernel_size:3
}
}
layer {
bottom:"conv3_4"
top:"conv3_4"
name:"relu3_4"
type:"ReLU"
}
layer {
bottom:"conv3_4"
top:"pool3"
name:"pool3"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool3"
top:"conv4_1"
name:"conv4_1"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_1"
top:"conv4_1"
name:"relu4_1"
type:"ReLU"
}
layer {
bottom:"conv4_1"
top:"conv4_2"
name:"conv4_2"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_2"
top:"conv4_2"
name:"relu4_2"
type:"ReLU"
}
layer {
bottom:"conv4_2"
top:"conv4_3"
name:"conv4_3"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_3"
top:"conv4_3"
name:"relu4_3"
type:"ReLU"
}
layer {
bottom:"conv4_3"
top:"conv4_4"
name:"conv4_4"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv4_4"
top:"conv4_4"
name:"relu4_4"
type:"ReLU"
}
layer {
bottom:"conv4_4"
top:"pool4"
name:"pool4"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool4"
top:"conv5_1"
name:"conv5_1"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_1"
top:"conv5_1"
name:"relu5_1"
type:"ReLU"
}
layer {
bottom:"conv5_1"
top:"conv5_2"
name:"conv5_2"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_2"
top:"conv5_2"
name:"relu5_2"
type:"ReLU"
}
layer {
bottom:"conv5_2"
top:"conv5_3"
name:"conv5_3"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_3"
top:"conv5_3"
name:"relu5_3"
type:"ReLU"
}
layer {
bottom:"conv5_3"
top:"conv5_4"
name:"conv5_4"
type:"Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom:"conv5_4"
top:"conv5_4"
name:"relu5_4"
type:"ReLU"
}
layer {
bottom:"conv5_4"
top:"pool5"
name:"pool5"
type:"Pooling"
pooling_param {
pool:MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom:"pool5"
top:"fc6_"
name:"fc6_"
type:"InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom:"fc6_"
top:"fc6_"
name:"relu6"
type:"ReLU"
}
layer {
bottom:"fc6_"
top:"fc6_"
name:"drop6"
type:"Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom:"fc6_"
top:"fc7"
name:"fc7"
type:"InnerProduct"
inner_product_param {
num_output: 4096
}
}
layer {
bottom:"fc7"
top:"fc7"
name:"relu7"
type:"ReLU"
}
layer {
bottom:"fc7"
top:"fc7"
name:"drop7"
type:"Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom:"fc7"
top:"fc8_"
name:"fc8_"
type:"InnerProduct"
inner_product_param {
num_output: 43
}
} layer {
name: "sigmoid"
type: "Sigmoid"
bottom: "fc8_"
top: "fc8_"
} layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8_"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
} layer {
name: "loss"
type: "EuclideanLoss"
bottom: "fc8_"
bottom: "label"
top: "loss"
}

  

name: "VGG_ILSVRC_16_layer"
layers {
name: "data"
type: IMAGE_DATA
top: "data"
top: "label"
include {
phase: TRAIN
} image_data_param {
batch_size: 80
source: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/Sun_100_Labeled_Train_0.5_.txt"
root_folder: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/train_image_sun_256_256/"
new_height: 224
new_width: 224
}
} layers {
name: "data"
type: IMAGE_DATA
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
}
image_data_param {
batch_size: 10
source: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/Sun_100_Test_0.5_.txt"
root_folder: "/home/wangxiao/SUN397_part/selected_sun/Sun-100/test_image_sun_227_227/"
new_height:224
new_width:224
}
} layers {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: RELU
}
layers {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: RELU
}
layers {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: RELU
}
layers {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: RELU
}
layers {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: RELU
}
layers {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: RELU
}
layers {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: RELU
}
layers {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: RELU
}
layers {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: RELU
}
layers {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: RELU
}
layers {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: RELU
}
layers {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: RELU
}
layers {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: RELU
}
layers {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool5"
top: "fc6"
name: "fc6"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8_"
name: "fc8_"
type: INNER_PRODUCT
inner_product_param {
num_output: 88
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "fc8_"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layers{
name: "loss"
type: SOFTMAX_LOSS
bottom: "fc8_"
bottom: "label"
top: "loss"
}

  

VGG-19 和 VGG-16 的 prototxt文件的更多相关文章

  1. Web 在线文件管理器学习笔记与总结(15)剪切文件夹 (16)删除文件夹

    (15)剪切文件夹 ① 通过rename($oldname,$newname) 函数实现剪切文件夹的操作 ② 需要检测目标文件夹是否存在,如果存在还要检测目标目录中是否存在同名文件夹,如果不存在则剪切 ...

  2. HTTP 错误 500.19 – Internal Server Error web.config 文件的 system.webServer/httpErrors 节中不允许绝对物理路径“C:\inetpub\custerr”[转]

    给ASP或者ASP.NET等需要配置IIS服务器的过程中,很可能会遇到以下两种错误.尤其是用Win7系统的,配置IIS7.0版本比用XP系统配置IIS5.1版本而言要复杂复杂一些.当同时需要配置ASP ...

  3. caffe生成deploy.prototxt文件

    参考: http://blog.csdn.net/cham_3/article/details/52682479 以caffe工程自带的mnist数据集,lenet网络为例: 将lenet_train ...

  4. 根据 train_test.prototxt文件生成 deploy.prototxt文件

    本文参考博文 (1)介绍 *_train_test.prototxt文件与 *_deploy.prototxt文件的不同:http://blog.csdn.net/sunshine_in_moon/a ...

  5. train_val.prototxt文件和deploy.prototxt文件开头的区别

    1.开头不同 对train_val.prototxt文件来说,开头部分定义训练和测试的网络及参数 对deploy.prototxt文件来说,开头部分定义实际运用场景的配置文件,其参数不定义数据来源,仅 ...

  6. 浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别

    本文以CaffeNet为例: 1. train_val.prototxt  首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt ...

  7. C/C++ 读取16进制文件

    1.为什么有这种需求 因为有些情况需要避免出现乱码.不管什么编码都是二进制的,这样表示为16进制就可以啦. 2.如何读取16进制文件 最近编程用这一问题,网上查了一下,感觉还是自己写吧. 16进制数据 ...

  8. 解析prototxt文件的python库 prototxt-parser(使用parsy自定义文件格式解析)

    解析prototxt文件的python库 prototxt-parser https://github.com/yogin16/prototxt_parser https://test.pypi.or ...

  9. VGG 19

    关于VGG19的一些参考资料 http://www.cnblogs.com/vipyoumay/archive/2017/11/23/7884472.html https://cloud.tencen ...

随机推荐

  1. 获取hadoop的源码和通过eclipse关联hadoop的源码

    一.获取hadoop的源码 首先通过官网下载hadoop-2.5.2-src.tar.gz的软件包,下载好之后解压发现出现了一些错误,无法解压缩, 因此有部分源码我们无法解压 ,因此在这里我讲述一下如 ...

  2. PAT 05-树8 Huffman Codes

    以现在的生产力,是做不到一天一篇博客了.这题给我难得不行了,花了两天时间在PAT上还有测试点1没过,先写上吧.记录几个做题中的难点:1.本来比较WPL那块我是想用一个函数实现的,无奈我对传字符串数组无 ...

  3. form表单select联动

    下拉列表:二级联动菜单 Select对象的常用属性 options[]:返回所有option组成的一个数组: name:名称 value:option的value的值 length:设置或读取opti ...

  4. 表单验证与Json配合

    <!doctype html> <html> <head> <meta charset="utf-8"> <meta name ...

  5. 输入任意IP,将IP转化为minion-IP格式(saltstack)

    注1:10.102. 可以替换成其他的,或者手动输入. 注2:minion-可以替换为其他的,或者手动输入. 代码如下(python3): import re # list = [] list1 = ...

  6. GSM cell phone calls use outdated encryption that can now be cracked with rainbow tables on a PC

    Decrypting GSM phone calls Motivation. GSM telephony is the world’s most popular communication techn ...

  7. Linux在IA-32体系结构下的地址映射

    1.概览 2.逻辑地址到线性地址 逻辑地址到线性地址的映射在IA-32体系结构中又被称为段式映射.如上图所示,段式映射我们首先需要获取逻辑地址和段选择符,段选择符用于获取GDT中段的基地址,将逻辑地址 ...

  8. 又见蒙特卡洛——python模拟解决三门问题

    三门问题很有意思,wiki用不同方法将原理讲的很透彻了,我跟喜欢其中这种理解方式:无论参赛者开始的选择如何,在被主持人问到是否更换时都选择更换.如果参赛者先选中山羊,换之后百分之百赢:如果参赛者先选中 ...

  9. 【Tsinghua OJ】循环移位(Cycle)

    Description Cycle shifting refers to following operation on the sting. Moving first letter to the en ...

  10. Sheet can not be presented because the view is not in a window的解决办法,和window的简单使用

    Sheet can not be presented because the view is not in a window,顺便在stackoverflow上找了答案,希望能给大家带来帮助,在此感谢 ...