Spark的一站式解决方案有很多的优势,具体如下。
(1)打造全栈多计算范式的高效数据流水线
     Spark支持复杂查询。 在简单的“map”及“reduce”操作之外,Spark还支持SQL查询、流式计算、 机器学习和图算法。 同时,用户可以在同一个工作流中无缝搭配这些计算范式。
(2)轻量级快速处理

Spark 1.0核心代码只有4万行。 这是由于Scala语言的简洁和丰富的表达力,以及Spark充分利用和集成Hadoop等其他第三方组件,同时着眼于大数据处理,数据处理速度是至关重要的,Spark通过将中间结果缓存在内存减少磁盘I/O来达到性能的提升。
(3)易于使用,Spark支持多语言
    Spark支持通过Scala、 Java及Python编写程序,这允许开发者在自己熟悉的语言环境下进行工作。 它自带了80多个算子,同时允许在Shell中进行交互式计算。 用户可以利用Spark像书写单机程序一样书写分布式程序,轻松利用Spark搭建大数据内存计算平台并充分利用内存计算,实现海量数据的实时处理。
(4)与HDFS等存储层兼容
     Spark可以独立运行,除了可以运行在当下的YARN等集群管理系统之外,它还可以读取已有的任何Hadoop数据。 这是个非常大的优势,它可以运行在任何Hadoop数据源上,如Hive、 HBase、 HDFS等。 这个特性让用户可以轻易迁移已有的持久化层数据。
(5)社区活跃度高
     Spark起源于2009年,当下已有超过50个机构、 260个工程师贡献过代码。 开源系统的发展不应只看一时之快,更重要的是支持一个活跃的社区和强大的生态系统。同时我们也应该看到Spark并不是完美的,RDD模型适合的是粗粒度的全局数据并行计算。 不适合细粒度的、 需要异步更新的计算。 对于一些计算需求,如果要针对特定工作负载达到最优性能,还是需要使用一些其他的大数据系统。 例如,图计算领域的GraphLab在特定计算负载性能上优于GraphX,流计算中的Storm在实时性要求很高的场合要比Spark Streaming更胜一筹。

Spark给我们带来了什么惊喜?的更多相关文章

  1. 由情感计算带来的惊喜发现——记Rosalind W. PICARD“21世纪的计算”大会主题演讲

    W. PICARD"21世纪的计算"大会主题演讲" title="由情感计算带来的惊喜发现--记Rosalind W. PICARD"21世纪的计算& ...

  2. Storm与Spark:谁才是我们的实时处理利器

    Storm与Spark:谁才是我们的实时处理利器 ——实时商务智能目前已经逐步迈入主流,而Storm与Spark开源项目的支持无疑在其中起到了显著的推动作用.那么问题来了:实时处理到底哪家强? 实时商 ...

  3. Apache Storm 与 Spark:对实时处理数据,如何选择【翻译】

    原文地址 实时商务智能这一构想早已算不得什么新生事物(早在2006年维基百科中就出现了关于这一概念的页面).然而尽管人们多年来一直在对此类方案进行探讨,我却发现很多企业实际上尚未就此规划出明确发展思路 ...

  4. A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets(中英双语)

    文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.Dat ...

  5. Spark大数据处理 之 动手写WordCount

    Spark是主流的大数据处理框架,具体有啥能耐,相信不需要多说.我们开门见山,直接动手写大数据界的HelloWorld:WordCount. 先上完整代码,看看咋样能入门. import org.ap ...

  6. Springboot(2.0.0.RELEASE)+spark(2.1.0)框架整合到jar包成功发布(原创)!!!

    一.前言 首先说明一下,这个框架的整合可能对大神来说十分容易,但是对我来说十分不易,踩了不少坑.虽然整合的时间不长,但是值得来纪念下!!!我个人开发工具比较喜欢IDEA,创建的springboot的j ...

  7. 且谈 Apache Spark 的 API 三剑客:RDD、DataFrame 和 Dataset

    作者:Jules S. Damji 译者:足下 本文翻译自 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets ,翻译已 ...

  8. 自适应查询执行:在运行时提升Spark SQL执行性能

    前言 Catalyst是Spark SQL核心优化器,早期主要基于规则的优化器RBO,后期又引入基于代价进行优化的CBO.但是在这些版本中,Spark SQL执行计划一旦确定就不会改变.由于缺乏或者不 ...

  9. Spark SQL 之 RDD、DataFrame 和 Dataset 如何选择

    引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用 ...

随机推荐

  1. .NET Framework 4.5 五个很棒的特性

    转自http://news.cnblogs.com/n/192958/ 英文原文:Five Great .NET Framework 4.5 Features 简介 自 .NET 4.5 发布已经过了 ...

  2. JS 样式操作学习总结。

    在我们编写网页的时候,样式表示我们常常需要相伴的内容,谁然很招人烦.恕我前端菜鸟对这东西很是无力啊.下面是我在代码浪潮中的虚席到的一些东西. 1.样式表内容修改方式. 2.当前元素样式内容获取. 3. ...

  3. 什么是PHP Guzzle?

    Guzzle是一个使得利用PHP实现发送HTTP 请求,方便和web service集成的PHP 客户端模拟组件.一句话,它就像一个PHP写的浏览器.当你的服务端程序需要作为客户端来访问其他的serv ...

  4. SQL 数据库表标识列初始化 DBCC

    把ArimaIndexForecastModel这张表的标识列重置为0,前提是这张表执行过删除操作 示例:  dbcc checkident('ArimaIndexForecastModel',res ...

  5. [反汇编练习] 160个CrackMe之021

    [反汇编练习] 160个CrackMe之021. 本系列文章的目的是从一个没有任何经验的新手的角度(其实就是我自己),一步步尝试将160个CrackMe全部破解,如果可以,通过任何方式写出一个类似于注 ...

  6. *ecshop 限制文章帮助文章显示条数

    1.打开 /themes/default/library/help.lbi 文件 <!-- {foreach from=$help_cat.article item=item} --> & ...

  7. JVM——判断对象的死活

    一.引用计数法 给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1,当引用失效时,计数器值就减1,任何时刻计数器为0的对象就是不可能再被使用的. 但是它很难解决对象之间相互循环引用的问 ...

  8. 响应式设计中几个class区别

    table-responsive:在小屏幕时不对内容做任何额外排版,只是允许左右滑动 scrollable-area:先尝试挤压起来,实在不行再左右滑动

  9. android性能小贴士 翻译

    转自http://developer.android.com/training/articles/perf-tips.html 性能小贴士: 这篇文档主要一些微优化可以提升应用程序性能,但是这些改变不 ...

  10. [Java]获取Window界面的标题栏的高度大小

    利用JFrame继承java.awt.Container类的函数getInsets().该函数返回insets类. import java.awt.Insets; import javax.swing ...