Python实现NN(神经网络)

参考自Github开源代码:https://github.com/dennybritz/nn-from-scratch

运行环境

  • Pyhton3
  • numpy(科学计算包)
  • matplotlib(画图所需,不画图可不必)
  • sklearn(人工智能包,生成数据使用)

计算过程

st=>start: 开始
e=>end: 结束
op1=>operation: 读入数据
op2=>operation: 格式化数据
cond=>condition: 是否达到迭代次数
op3=>operation: 正向传播获取参数
op4=>operation: 后向传播计算参数
op5=>operation: 梯度下降更新参数
op6=>operation: 输出结果 st->op1->op2->cond
cond(yes)->op6->e
cond(no)->op3->op4->op5

输入样例

none

代码实现

# -*- coding: utf-8 -*-
__author__ = 'Wsine' import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
import matplotlib.pyplot as plt
import matplotlib
import operator
import time def createData(dim=200, cnoise=0.20):
"""
输出:数据集, 对应的类别标签
描述:生成一个数据集和对应的类别标签
"""
np.random.seed(0)
X, y = sklearn.datasets.make_moons(dim, noise=cnoise)
plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
#plt.show()
return X, y def plot_decision_boundary(pred_func, X, y):
"""
输入:边界函数, 数据集, 类别标签
描述:绘制决策边界(画图用)
"""
# 设置最小最大值, 加上一点外边界
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
# 根据最小最大值和一个网格距离生成整个网格
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# 对整个网格预测边界值
Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘制边界和数据集的点
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral) def calculate_loss(model, X, y):
"""
输入:训练模型, 数据集, 类别标签
输出:误判的概率
描述:计算整个模型的性能
"""
W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
# 正向传播来计算预测的分类值
z1 = X.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
# 计算误判概率
corect_logprobs = -np.log(probs[range(num_examples), y])
data_loss = np.sum(corect_logprobs)
# 加入正则项修正错误(可选)
data_loss += reg_lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)))
return 1./num_examples * data_loss def predict(model, x):
"""
输入:训练模型, 预测向量
输出:判决类别
描述:预测类别属于(0 or 1)
"""
W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
# 正向传播计算
z1 = x.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
return np.argmax(probs, axis=1) def initParameter(X):
"""
输入:数据集
描述:初始化神经网络算法的参数
必须初始化为全局函数!
这里需要手动设置!
"""
global num_examples
num_examples = len(X) # 训练集的大小
global nn_input_dim
nn_input_dim = 2 # 输入层维数
global nn_output_dim
nn_output_dim = 2 # 输出层维数 # 梯度下降参数
global epsilon
epsilon = 0.01 # 梯度下降学习步长
global reg_lambda
reg_lambda = 0.01 # 修正的指数 def build_model(X, y, nn_hdim, num_passes=20000, print_loss=False):
"""
输入:数据集, 类别标签, 隐藏层层数, 迭代次数, 是否输出误判率
输出:神经网络模型
描述:生成一个指定层数的神经网络模型
"""
# 根据维度随机初始化参数
np.random.seed(0)
W1 = np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim)
b1 = np.zeros((1, nn_hdim))
W2 = np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim)
b2 = np.zeros((1, nn_output_dim)) model = {} # 梯度下降
for i in range(0, num_passes):
# 正向传播
z1 = X.dot(W1) + b1
a1 = np.tanh(z1) # 激活函数使用tanh = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2) # 原始归一化
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
# 后向传播
delta3 = probs
delta3[range(num_examples), y] -= 1
dW2 = (a1.T).dot(delta3)
db2 = np.sum(delta3, axis=0, keepdims=True)
delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))
dW1 = np.dot(X.T, delta2)
db1 = np.sum(delta2, axis=0)
# 加入修正项
dW2 += reg_lambda * W2
dW1 += reg_lambda * W1
# 更新梯度下降参数
W1 += -epsilon * dW1
b1 += -epsilon * db1
W2 += -epsilon * dW2
b2 += -epsilon * db2
# 更新模型
model = { 'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
# 一定迭代次数后输出当前误判率
if print_loss and i % 1000 == 0:
print("Loss after iteration %i: %f" % (i, calculate_loss(model, X, y)))
plot_decision_boundary(lambda x: predict(model, x), X, y)
plt.title("Decision Boundary for hidden layer size %d" % nn_hdim)
#plt.show()
return model def main():
dataSet, labels = createData(200, 0.20)
initParameter(dataSet)
nnModel = build_model(dataSet, labels, 3, print_loss=False)
print("Loss is %f" % calculate_loss(nnModel, dataSet, labels)) if __name__ == '__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))
plt.show()

输出样例

Loss is 0.071316
finish all in 7.221354361552228

Python实现NN(神经网络)的更多相关文章

  1. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  2. 基于Python的卷积神经网络和特征提取

    基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测 ...

  3. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

  4. 使用python实现深度神经网络 3(转)

    使用python实现深度神经网络 3 快速计算梯度的魔法--反向传播算法 快速计算梯度的魔法--反向传播算法 一.实验介绍 1.1 实验内容 第一次实验最后我们说了,我们已经学习了深度学习中的模型mo ...

  5. 使用python实现深度神经网络 1(转)

    使用python实现深度神经网络 1(转) https://blog.csdn.net/oxuzhenyi/article/details/73026790

  6. python构建bp神经网络_曲线拟合(一个隐藏层)__2.代码实现

    IDE:jupyter 抽象程度可能不是那么高,以后再优化. 理论和代码实现的差距还是挺大的 数据集请查看 python构建bp神经网络(一个隐藏层)__1.数据可视化 部分代码预览 git上传.ip ...

  7. AttributeError: module ‘tensorflow.python.ops.nn’ has no attribute ‘leaky_relu’

    #AttributeError: module 'tensorflow.python.ops.nn' has no attribute 'leaky_relu' 的原因主要是版本的问题 解决方法是更新 ...

  8. python对BP神经网络实现

    python对BP神经网络实现 一.概念理解 开始之前首先了解一下BP神经网络,BP的英文是back propagationd的意思,它是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称 ...

  9. 使用python实现深度神经网络 4(转)

    https://blog.csdn.net/oxuzhenyi/article/details/73026807 使用浅层神经网络识别图片中的英文字母 一.实验介绍 1.1 实验内容 本次实验我们正式 ...

随机推荐

  1. 用代码打开FORM里面用到的数据源

    修改动态报表的时候,尝尝需要根据当前设计里指定的数据源,然后打开AOT去查找,相当的不方便. 于是产生写了一个方法,可以根据传过来的数据源名,去AOT找到TABLE或者VIEW, 直接打开,以便修改. ...

  2. Jquery入门之---------基本事件------------

    Javascript有一个非常重要的功能,就是事件驱动. 当页面完成加载后,用户通过鼠标或键盘触发页面中绑定事件的元素即可触发.Jquery为开发者更有效率的编写事件行为,封装了大量有益的事件方法供我 ...

  3. Winform TreeView 单选

    private void treeView1_AfterCheck(object sender, TreeViewEventArgs e) { //通过鼠标或者键盘触发事件,防止修改节点的Checke ...

  4. Blend制作的下载动画

    最近使用Blend制作了一个下载动画,感觉很有意思,所以这篇给各位介绍下如何使用Blend制作一个简单的下载动画的步骤 首先拖出一个圆,参数如下: 选中椭圆后单击Properties面板,选择“Fil ...

  5. arguments .length .callee caller

    如果有一个函数像下面这样: function fn(){ } 那么fn这个函数下面就有一个arguments属性(你在逗我么,后面又说对象),该属性是个对象(typeof一下就知道了),然后它下面也有 ...

  6. 删:[CentOS 7] 安装nginx

    下载对应当前系统版本的nginx包(package) # wget  http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-cent ...

  7. Linux平台下:块设备、裸设备、ASMlib、Udev相关关系

    对磁盘设备(裸分区)的访问方式分为两种:1.字符方式访问(裸设备):2.块方式访问 Solaris平台 : 在Solaris平台下,系统同时提供对磁盘设备的字符.块方式访问.每个磁盘有两个设备文件名: ...

  8. MHA在线切换过程

    MHA 在线切换是MHA除了自动监控切换换提供的另外一种方式,多用于诸如硬件升级,MySQL数据库迁移等等.该方式提供快速切换和优雅的阻塞写入,无关关闭原有服务器,整个切换过程在0.5-2s 的时间左 ...

  9. C#程序双击运行之后,界面不显示,但是在任务管理器有进程(一个winform找bug之旅)

    最近客户端又出了奇葩事情:http://q.cnblogs.com/q/43038/ 如这篇博问一样.我的一个客户的电脑上程序打开了,进程也有了,就是界面窗体出不来!!! 我是win7是开发机,三四台 ...

  10. 在CentOS6.5下安装Memcached

    CentOS 6.5 安装软件非常方便, yum install memcached