类继承关系:

NonfairSync => Sync => AbstractQueuedSynchronizer

类NonfairSync

final void lock() {

if (compareAndSetState(0, 1))

setExclusiveOwnerThread(Thread.currentThread());

else

acquire(1);

}

分析:

compareAndSetState(0, 1):通过cas操作更新state状态,若成功,则获取到锁,否则,进行排队申请操作acquire

类AbstractQueuedSynchronizer

public final void acquire(int arg) {

if (!tryAcquire(arg) &&

acquireQueued(addWaiter(Node.EXCLUSIVE), arg))

selfInterrupt();

}

分析:

tryAcquire方法最终实现为:

类Sync

final boolean nonfairTryAcquire(int acquires) {

final Thread current = Thread.currentThread();

int c = getState();

if (c == 0) {

if (compareAndSetState(0, acquires)) {

setExclusiveOwnerThread(current);

return true;

}

}

else if (current == getExclusiveOwnerThread()) {

int nextc = c + acquires;

if (nextc < 0) // overflow

throw new Error("Maximum lock count exceeded");

setState(nextc);

return true;

}

return false;

}

通过cas操作更新state状态,若成功,则获取到锁,否则,首先进行排队,

类AbstractQueuedSynchronizer

private Node addWaiter(Node mode) {

Node node = new Node(Thread.currentThread(), mode);

// Try the fast path of enq; backup to full enq on failure

Node pred = tail;

if (pred != null) {

node.prev = pred;

if (compareAndSetTail(pred, node)) {

pred.next = node;

return node;

}

}

enq(node);

return node;

}

注意:

每一个线程被封装成一个Node节点。

进入enq方法——入队列

private Node enq(final Node node) {

for (;;) {

Node t = tail;

if (t == null) { // Must initialize

if (compareAndSetHead(new Node()))

tail = head;

} else {

node.prev = t;

if (compareAndSetTail(t, node)) {

t.next = node;

return t;

}

}

}

}

分析:

这里针对head和tail属性的赋值均为cas原子操作。

最终模型如图:

如果多线程并发入队,最终结果如图:

注:prev和next分别为Node类的两个属性

入队操作结束后,开始请求队列acquireQueued

类AbstractQueuedSynchronizer

final boolean acquireQueued(final Node node, int arg) {

boolean failed = true;

try {

boolean interrupted = false;

for (;;) {

final Node p = node.predecessor();

if (p == head && tryAcquire(arg)) {

setHead(node);

p.next = null; // help GC

failed = false;

return interrupted;

}

if (shouldParkAfterFailedAcquire(p, node) &&

parkAndCheckInterrupt())

interrupted = true;

}

} finally {

if (failed)

cancelAcquire(node);

}

}

分析:

  1. Node p = node.predecessor()获取node的prev节点
  2. 如果prev==head节点并且tryAcquire返回true,则更新head节点为当前节点,并退出循环,也就获取到了锁。
  3. 否则的话,执行shouldParkAfterFailedAcquire和parkAndCheckInterrupt。
  4. setHead方法来修改head属性,改变队列的头部节点

  其中,shouldParkAfterFailedAcquire方法是针对waitStatus属性的修改

  private final boolean parkAndCheckInterrupt() {

  LockSupport.park(this);

  return Thread.interrupted();

  }

  LockSupport.park(this),使当前线程进入阻塞。

unlock分析

类AbstractQueuedSynchronizer

public final boolean release(int arg) {

if (tryRelease(arg)) {

Node h = head;

if (h != null && h.waitStatus != 0)

unparkSuccessor(h);

return true;

}

return false;

}

类Sync

protected final boolean tryRelease(int releases) {

int c = getState() - releases;

if (Thread.currentThread() != getExclusiveOwnerThread())

throw new IllegalMonitorStateException();

boolean free = false;

if (c == 0) {

free = true;

setExclusiveOwnerThread(null);

}

setState(c);

return free;

}

分析:

主要工作就是设置还原state状态

类AbstractQueuedSynchronizer

private void unparkSuccessor(Node node) {

int ws = node.waitStatus;

if (ws < 0)

compareAndSetWaitStatus(node, ws, 0);

Node s = node.next;

if (s == null || s.waitStatus > 0) {

s = null;

for (Node t = tail; t != null && t != node; t = t.prev)

if (t.waitStatus <= 0)

s = t;

}

if (s != null)

LockSupport.unpark(s.thread);

}

分析:

  1. 入参node即head节点
  2. Node s = node.next;即获取到下一个节点,即正在阻塞中的线程
  3. LockSupport.unpark(s.thread);即激活线程

分析NonfairSync加锁/解锁过程的更多相关文章

  1. 从ReentrantLock加锁解锁角度分析AQS

    本文用于记录在学习AQS时,以ReentrantLock为切入点,深入源码分析ReentrantLock的加锁和解锁过程. 同步器AQS的主要使用方式是继承,子类通过继承同步器并实现它的抽象方法来管理 ...

  2. 进程间通信(IPC)+进程加锁解锁

    [0]README 0.1) source code and text description are from orange's implemention of a os: 0.2) for com ...

  3. Spring Ioc源码分析系列--Bean实例化过程(一)

    Spring Ioc源码分析系列--Bean实例化过程(一) 前言 上一篇文章Spring Ioc源码分析系列--Ioc容器注册BeanPostProcessor后置处理器以及事件消息处理已经完成了对 ...

  4. 多线程与高并发(二)—— Synchronized 加锁解锁流程

    前言 上篇主要对 Synchronized 的锁实现原理 Monitor 机制进行了介绍,由于 Monitor 基于操作系统调用,上下文切换导致开销大,在竞争不激烈时性能不算很好, 在 jdk6 之后 ...

  5. Linux第三周——跟踪分析内核的启动过程

    跟踪分析内核的启动过程实验 张潇月<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 这周主要学习的是对内核 ...

  6. Linux 进程与线程四(加锁--解锁)

    线程共享进程的内存空间,打开的文件描述符,全局变量. 当有多个线程同事访问一块内存空间或者一个变量.一个文件描述符,如果不加控制,那么可能会出现意想不到的结果. 原子操作 对于我们的高级语言(C语言, ...

  7. 使用redis的比较完美的加锁解锁

    使用redis的比较完美的加锁解锁 tags:redis read&write redis加锁和解锁 php 习惯性说一下写这篇文章要说明什么,我们经常用redis进行加锁操作,目的是为了解决 ...

  8. MyBatis 源码分析 - SQL 的执行过程

    * 本文速览 本篇文章较为详细的介绍了 MyBatis 执行 SQL 的过程.该过程本身比较复杂,牵涉到的技术点比较多.包括但不限于 Mapper 接口代理类的生成.接口方法的解析.SQL 语句的解析 ...

  9. MyBatis 源码分析 - 映射文件解析过程

    1.简介 在上一篇文章中,我详细分析了 MyBatis 配置文件的解析过程.由于上一篇文章的篇幅比较大,加之映射文件解析过程也比较复杂的原因.所以我将映射文件解析过程的分析内容从上一篇文章中抽取出来, ...

随机推荐

  1. 20155205 《Java程序设计》实验三(敏捷开发与XP实践)实验报告

    20155205 <Java程序设计>实验三(敏捷开发与XP实践)实验报告 一.实验内容及步骤 (一)使用Code菜单 在IDEA中使用工具(Code->Reformate Code ...

  2. 20155205 2016-2017-2 《Java程序设计》第10周学习总结

    20155205 2016-2017-2 <Java程序设计>第10周学习总结 教材学习内容总结 计算机网络基础 什么是网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数 ...

  3. C语言实现BMP图片生成

    ## #include <stdio.h> #include <stdlib.h> #include <string.h> typedef unsigned cha ...

  4. Qt_MainWindow简介

    QMainWindow 是Qt框架带来的一个预定义好的主窗口类.按照建立HelloWorld程序建立工程,直接运行,或有一个空窗口. main().cpp #include "mainwin ...

  5. 软工网络15团队作业4——Alpha阶段敏捷冲刺(一)

    第 1 篇 Scrum 冲刺: 各个成员在 Alpha 阶段认领的任务 成员      任务 预期任务量/小时 曾艺佳 学习模块:单词及其释义      单词发音     例句学习     添加笔记 ...

  6. URAL1099. Work Scheduling(一般图匹配带花树开花算法)

    1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night gu ...

  7. hadoop一代集群运行代码案例

    hadoop一代集群运行代码案例 集群 一个 master,两个slave,IP分别是192.168.1.2.192.168.1.3.192.168.1.4               hadoop版 ...

  8. hdu 4927 组合+公式

    http://acm.hdu.edu.cn/showproblem.php?pid=4927 给定一个长度为n的序列a,每次生成一个新的序列,长度为n-1,新序列b中bi=ai+1−ai,直到序列长度 ...

  9. Scala_关键字

    关键字 Lazy Scala中用lazy定义的变量叫惰性变量,会实现延迟加载:惰性变量只能是不可变变量,而且只有在调用惰性变量时,才会去实列化这个变量 object ScalaLazyDemo1{   ...

  10. r test

    rt <-read.table("C:/Users/Ju/Desktop/anova/anova.txt",head=TRUE) lm.sol <-lm(Y~X1+X2 ...