https://www.luogu.org/problemnew/show/P3994

设dp[i] 表示第i个城市到根节点的最小花费

dp[i]=min{ (dis[i]-dis[j])*P[i]+Q[i]+dp[j] }

这是O(n^2)的

这个式子可以斜率优化

dp[i]+dis[j]*P[i]=dis[i]*P[i]+Q[i]+dp[j]

就是一条斜率为P[i]的直线,截(dis[j],dp[j])的最小截距

在根往下走的过程中,斜率单调递增

这就体现了 为什么题目中说“i号城市是j号城市的某个祖先,那么一定存在Pi<=Pj”

我们按dfs序dp

现在唯一的问题就是如何得到 一个点到根节点路径上的单调队列

只需要考虑如何去除兄弟节点的子树对单调队列的影响

即在一个节点退出dfs时,将单调队列恢复为这个节点开始dfs的情况

头指针只是不断的+1,没有涉及到单调队列中元素的修改,所以记录下头指针在哪个位置即可

尾指针涉及到元素的替换,但是它只会替换一个元素,所以记录下尾指针的位置,以及被当前点替换的元素是谁

当节点退出dfs时,恢复记录的这三个值即可

这样的话,一个节点多次出队入队,时间复杂度就不是O(n)了

所以二分出队位置,时间复杂度为O(nlogn)

朴素的DP:

#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; #define N 1000001 typedef long long LL; int P[N],Q[N]; int front[N],to[N<<],nxt[N<<],val[N<<],tot; int fa[N]; LL dis[N]; int t;
LL mi[N]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; val[tot]=w;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot; val[tot]=w;
} void dfs(int x,int f)
{
for(int i=front[x];i;i=nxt[i])
{
if(to[i]==f) continue;
dis[to[i]]=dis[x]+val[i];
mi[to[i]]=dis[to[i]]*P[to[i]]+Q[to[i]];
t=fa[to[i]];
while(t!=)
{
mi[to[i]]=min(mi[to[i]],(dis[to[i]]-dis[t])*P[to[i]]+Q[to[i]]+mi[t]);
t=fa[t];
}
dfs(to[i],x);
}
} int main()
{
int n,s;
read(n);
for(int i=;i<n;++i)
{
read(fa[i+]); read(s); read(P[i+]); read(Q[i+]);
add(fa[i+],i+,s);
}
dfs(,);
for(int i=;i<=n;++i) cout<<mi[i]<<'\n';
}

斜率优化,暴力出队:

#include<cstdio>
#include<iostream> using namespace std; #define N 1000001 typedef long long LL; int front[N],nxt[N],to[N],tot,val[N]; int P[N],Q[N]; int q[N],head,tail; LL dis[N];
LL dp[N]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; val[tot]=w;
} inline double X(int i,int j) { return dis[j]-dis[i]; }
inline double Y(int i,int j) { return dp[j]-dp[i]; } void dfs(int x)
{
int now_h=head,now_t=tail;
while(head<tail- && Y(q[head],q[head+])<P[x]*X(q[head],q[head+])) head++;
int j=q[head];
dp[x]=(dis[x]-dis[j])*P[x]+dp[j]+Q[x];
while(head<tail- && Y(q[tail-],q[tail-])*X(q[tail-],x)>X(q[tail-],q[tail-])*Y(q[tail-],x)) tail--;
int rr=q[tail];
q[tail++]=x;
for(int i=front[x];i;i=nxt[i])
dis[to[i]]=dis[x]+val[i],dfs(to[i]);
head=now_h; q[tail-]=rr; tail=now_t;
} int main()
{
int n;
read(n);
int fa,d;
for(int i=;i<=n;++i)
{
read(fa); read(d);
add(fa,i,d);
read(P[i]); read(Q[i]);
}
for(int i=front[];i;i=nxt[i])
{
dis[to[i]]=val[i];
q[head=]=; tail=;
dfs(to[i]);
}
for(int i=;i<=n;++i) cout<<dp[i]<<'\n';
}

斜率优化,二分出队

#include<cstdio>
#include<iostream> using namespace std; #define N 1000001 typedef long long LL; int front[N],nxt[N],to[N],tot,val[N]; int P[N],Q[N]; int q[N],head,tail; LL dis[N];
LL dp[N]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; val[tot]=w;
} inline double X(int i,int j) { return dis[j]-dis[i]; }
inline double Y(int i,int j) { return dp[j]-dp[i]; } void dfs(int x)
{
int now_h=head,now_t=tail;
int l=head,r=tail-,mid,tmp=-;
while(l<=r)
{
mid=l+r>>;
if(Y(q[mid],q[mid+])>=P[x]*X(q[mid],q[mid+])) tmp=mid,r=mid-;
else l=mid+;
}
if(tmp!=-) head=tmp;
else head=tail-;
int j=q[head];
dp[x]=(dis[x]-dis[j])*P[x]+dp[j]+Q[x];
l=head,r=tail-,tmp=-;
while(l<=r)
{
mid=l+r>>;
if(Y(q[mid],q[mid+])*X(q[mid+],x)<=X(q[mid],q[mid+])*Y(q[mid+],x)) tmp=mid,l=mid+;
else r=mid-;
}
if(tmp!=-) tail=tmp+;
else tail=head+;
int rr=q[tail];
q[tail++]=x;
for(int i=front[x];i;i=nxt[i])
dis[to[i]]=dis[x]+val[i],dfs(to[i]);
head=now_h; q[tail-]=rr; tail=now_t;
} int main()
{
int n;
read(n);
int fa,d;
for(int i=;i<=n;++i)
{
read(fa); read(d);
add(fa,i,d);
read(P[i]); read(Q[i]);
}
for(int i=front[];i;i=nxt[i])
{
dis[to[i]]=val[i];
q[head=]=; tail=;
dfs(to[i]);
}
for(int i=;i<=n;++i) cout<<dp[i]<<'\n';
}

洛谷 P3994 高速公路的更多相关文章

  1. 洛谷 P3994 高速公路(斜率优化)

    题目链接 题意:给出一棵树,\(1\) 号点为根,边上有边权. 每个点有两个参数 \(p_i,q_i\) 如果你想从 \(i\) 号点到与其距离为 \(d\) 的 \(j\) 号点,那么你需花费 \( ...

  2. 【洛谷p3994】Highway 二分+斜率优化DP

    题目大意:给你一颗$n$个点的有根树,相邻两个点之间有距离,我们可以从$x$乘车到$x$的祖先,费用为$dis\times P[x]+Q[x]$,问你除根以外每个点到根的最小花费. 数据范围:$n≤1 ...

  3. 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)

    有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...

  4. 洛谷P2221 高速公路【线段树】

    题目:https://www.luogu.org/problemnew/show/P2221 题意:有n个节点排成一条链,相邻节点之间有一条路. C u v val表示从u到v的路径上的每条边权值都加 ...

  5. 洛谷P2242 公路维修问题

    To 洛谷.2242 公路维修问题 题目描述 由于长期没有得到维修,A国的高速公路上出现了N个坑.为了尽快填补好这N个坑,A国决定对M处地段采取交通管制.为了求解方便,假设A国的高速公路只有一条,而且 ...

  6. [洛谷P3761] [TJOI2017]城市

    洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...

  7. 洛谷 P5638 光骓者的荣耀

    洛谷 P5638 [CSGRound2]光骓者的荣耀 洛谷传送门 题目背景 小 K 又在做白日梦了.他进入到他的幻想中,发现他打下了一片江山. 题目描述 小 K 打下的江山一共有nn个城市,城市ii和 ...

  8. 洛谷 P6383 -『MdOI R2』Resurrection(DP)

    洛谷题面传送门 高速公路上正是补 blog 的时候,难道不是吗/doge,难不成逆在高速公路上写题/jy 首先形成的图显然是连通图并且有 \(n-1\) 条边.故形成的图是一棵树. 我们考虑什么样的树 ...

  9. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

随机推荐

  1. 【阿里巴巴】CBU技术部招聘

    如果你偏爱技术挑战,希望成就不一样的自己,欢迎投递简历至 yangyang.xiayy@alibaba-inc.com [业务简介] B2B内贸www.1688.com:1688.com是最大的内贸B ...

  2. [翻译]:Cinemachine 官方文档(0)

    目录 Overview : Installation and Getting Started :安装并开始 User Guide :用户指南 What is Cinemachine? : 什么是Cin ...

  3. sqli-labs 下载、安装

    sqli-labs 下载.安装 下载地址:https://github.com/Audi-1/sqli-labs phpstudy:http://down.php.cn/PhpStudy2018021 ...

  4. PHP Lavavel 使用控制器 传递变量 以及调用 视图模板

    控制器第一次入门使用 位置: 在app/Http/Controllers 目录下创建文件名格式:例如 UserController路由调用格式:Route::get('user/tom','UserC ...

  5. App云测试服务对比

    前言: 我们都知道在测试移动app时最耗时的是在各种测试设备进行测试, 因为不论是安卓还是iOS都已经碎片化了.而云测试看似是解决这一问题的有效途径.因此选择哪种云测试平台来协助测试人员进行各种测试就 ...

  6. 1082. Read Number in Chinese (25)-字符串处理

    题意就是给出9位以内的数字,按照汉子的读法读出来. 读法请看下方的几个例子: 5 0505 0505 伍亿零伍佰零伍万零伍佰零伍 5 5050 5050 伍亿伍仟零伍拾万伍仟零伍拾  (原本我以为这个 ...

  7. FPGA千兆位收发器选择指南

    选择合适的千兆位收发器(GT)是通信和实时处理领域尤其需要重点考虑的设计事项,但特定的市场领域可能会存在太多的标准.协议或使用模型.有时针对某一种应用就会涉及到好几种标准,为了选择最适合的千兆位收发器 ...

  8. C++ 实验 使用重载运算符实现一个复数类

    实验目的: 1.掌握用成员函数重载运算符的方法 2.掌握用友元函数重载运算符的方法 实验要求: 1.定义一个复数类,描述一些必须的成员函数,如:构造函数,析构函数,赋值函数,返回数据成员值的函数等. ...

  9. Linux shell(1)

    Linux的Shell种类众多,常见的有:Bourne Shell(/usr/bin/sh或/bin/sh).Bourne Again Shell(/bin/bash).C Shell(/usr/bi ...

  10. WC----命令行实现对文件信息的统计

    需求分析: 程序处理用户需求的模式为: wc.exe [parameter][filename] 在[parameter]中,用户通过输入参数与程序交互,需实现的功能如下: 1.基本功能 支持 -c ...