题目链接:https://cn.vjudge.net/contest/276376#problem/E

题目大意:给你n,m,k,n,m代表当前由于无限个质量为n,m的砝码。然后当前有一个秤,你可以通过秤的左边和右边的砝码种类和数目,能够测出m的质量,然后问你使用两个砝码总和最少的情况。

具体思路:和前面几个题的思路一样,列出等式Ax+By=C,然后再通过扩展欧几里得去解这个式子,当前一共有两组解,一个是通过x,解出y。另一个是通过y,解出x。我们就取这两种的总和最小的情况就可以了。注意x和y都应该是非负数,所以当第一种情况解出的y是负值的时候,y应该取反,第二种情况类似。

AC代码:

 #include<iostream>
#include<stack>
#include<cmath>
#include<queue>
#include<stdio.h>
#include<algorithm>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn = 1e5+;
ll xo,yo;
ll exgcd(ll a,ll b)
{
if(b==)
{
xo=;
yo=;
return a;
}
ll gcd=exgcd(b,a%b);
ll tmp=yo;
yo=xo-a/b*yo;
xo=tmp;
return gcd;
}
int main()
{
ll a,b,c;
while(~scanf("%lld %lld %lld",&a,&b,&c)&&(a+b+c))
{
ll t=exgcd(a,b);
ll t1=b/t;
if(t1<)
t1-=t1;
ll x1=(c*xo/t%t1+t1)%t1;
ll y1=(c-a*x1)/b;
if(y1<)y1=-y1;
ll minn=x1+y1;
t1=a/t;
ll y2=(yo*c/t%t1+t1)%t1;
ll x2=(c-b*y2)/a;
if(x2<)x2=-x2;
if(minn>x2+y2)x1=x2,y1=y2;
printf("%lld %lld\n",x1,y1);
}
return ;
}

扩展欧几里得(E - The Balance POJ - 2142 )的更多相关文章

  1. 扩展欧几里得求解同余方程(poj 1061)

    设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061 ...

  2. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...

  3. POJ 2142 - The Balance [ 扩展欧几里得 ]

    题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...

  4. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  5. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  6. UVA 10090 Marbles 扩展欧几里得

    来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...

  7. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  8. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  9. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

随机推荐

  1. kafka学习总结之kafka核心

    1.  Kafka核心组件 (1)replication(副本).partition(分区) 一个topic可以有多个副本,副本的数量决定了有多少个broker存放写入的数据:副本是以partitio ...

  2. Linux读书笔记第一周

    1.Unix内核的特点:简洁:抽象:可移植性:进程创建:清晰的层次化结构. Linux内核是一种自由/开源的软件,设计思想与Unix系统相似(一切皆文件,特定的单一用途 & 简单的组合方式) ...

  3. Qrcode生成二维码的参数总结 及最小尺寸的测试

    Qrcode生成二维码,做过很多实验,探索最小规格的二维码到底是多少尺寸,和最高规格的二维码到底是多大尺寸.现在我总结总结: 有两种思路: 1.生成规格高的二维码,然后压缩到自己想要的尺寸的二维码.这 ...

  4. RocketMQ 事务消息

    RocketMQ 事务消息在实现上充分利用了 RocketMQ 本身机制,在实现零依赖的基础上,同样实现了高性能.可扩展.全异步等一系列特性. 在具体实现上,RocketMQ 通过使用 Half To ...

  5. IIS 下 搭建简单的FTP服务器

    1. 修改用户策略, 创建简单用户密码 命令行输入 gpedit.msc 打开组策略 位置 2. 创建一个FTP使用的用户 net user zhaobsh Test6530 /add 3. 安装II ...

  6. php 有意思的小题

    /** * 你的是一个数字和一个字符串进行比较,PHP会把字符串转换成数字再进行比较.* PHP转换的规则的是:若字符串以数字开头,则取开头数字作为转换结果,若无则输出0.***/1)$a =”abc ...

  7. linux 解压文件

    原文:android之常用解压缩指令 .tar解包:tar xvf FileName.tar打包:tar cvf FileName.tar DirName ---------------------- ...

  8. Java学习之StringBuffer

              1.类介绍 ①线程安全的可变字符串序列,一个类似于String的字符串缓冲区,但是不能修改(就是不能通过加号+连接,String就可以) ②StringBuffer和String类 ...

  9. c++11 追踪返回类型

    c++11 追踪返回类型 返回类型后置:使用"->"符号,在函数名和参数列表后面指定返回类型. #define _CRT_SECURE_NO_WARNINGS #includ ...

  10. 【刷题】BZOJ 4391 [Usaco2015 dec]High Card Low Card

    Description Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of ...