RNA测序相对基因表达芯片有什么优势?

RNA-Seq和基因表达芯片相比,哪种方法更有优势?关键看适用不适用。那么RNA-Seq适用哪些研究方向?是否您的研究?来跟随本文了解一下RNA测序相对基因表达芯片有什么优势?

无假设的研究设计和更高的发现能力
RNA-Seq是一种基于测序的强大方法,让研究人员能够打破传统技术的低效和花费,如实时定量PCR(RT-PCR)和芯片。无论是将RNA-Seq添加到现有的研究方法中,还是从一种方法彻底转换到另一种,RNA-Seq都带来了许多显而易见的优势。这种方法不需要预先设计的探针,因此数据集是无偏倚的,实现了无假设的实验设计2,3。这种类型的NGS分析对转录本和变异发现研究而言是一种有力工具,而传统的芯片方法无法实现。

更宽的动态范围和更高的灵敏度
芯片测定连续探针强度,而RNA-Seq不同,它对与参考序列比对的单条序列进行定量,产生了离散的(数字)读数2。此外,通过增加或减少测序读数(覆盖水平或覆盖深度),研究人员可以微调实验的灵敏度,以适应不同的研究目标。这个过程的数字化属性以及控制覆盖水平的能力支持一个非常宽的动态范围,提供绝对而不是相对的表达值1-3。假设有1000-5000万条定位读数,则RNA-Seq的动态范围可跨越5个数量级(>105),这通常比大多数芯片技术(103)高出几个数量级2,4。因此,研究表明,RNA-Seq可检测的差异表达基因比例比表达芯片更高,特别是低丰度的基因4,5。

检测选择性剪接位点和新型异构体以及非编码RNA的能力
除了基因表达谱分析,RNA-Seq还能鉴定选择性剪接异构体、剪接位点和等位基因特异的表达–所有这些都在单个实验中完成1,2。此外,RNA-Seq还能测序极短的片段,且文库制备方法可包含或排除mRNA提取,这样它就能检测并测序小RNA及多种形式的非编码RNA,如小干扰RNA(siRNA)、microRNA(miRNA)、核仁小RNA(snoRNA)及转运RNA(tRNA)1,2。测序小片段的能力也让降解的RNA样品产生高质量的数据,如福尔马林固定、石蜡包埋(FFPE)样品6。随着转录组的新特征被不断发现,测序数据还可以重新分析。对于芯片,假设原始样品仍然可用,样品也必须重新走完整个芯片流程,从探针设计到实验室工作7。总之,RNA-Seq相对于芯片而言具有很多优势(表1)。它带来转录组范围的覆盖、宽的动态范围以及高灵敏度的独特组合,让研究人员能够研究和了解正常发育和疾病的分子机制。

表1 RNA-Seq技术与表达芯片的比较!--?

应用

RNA-Seq

芯片

每次运行之间的重复性高

动态范围与细胞内真正的转录本丰度相当

能够检测选择性剪接位点和新的异构体

无参考基因组的de novo分析

再次分析数据

 

总结:RNA-Seq相对基因表达芯片的优势(图1)

• 在转录本水平提供灵敏且准确的基因表达测定
• 产生定性且定量的数据
• 捕获剪接点、融合、编码及多种形式的非编码RNA,如siRNA、miRNA、snoRNA和tRNA
• 覆盖非常宽的动态范围
• 在降解RNA上表现出色,如FFPE组织样品
• 在数据中维持和追踪链特异的信息
• 为发现型的应用带来一种更强大的方法
• 在大型研究和大量样品时可扩展

有了这些优势,RNA-Seq正在推动研究的步伐,在多个领域催生高影响力的论文,包括癌症研究、复杂疾病和病毒学(图2)

 

RNA-Seq适用哪些研究方向?

转化医学--癌症研究
通过RNA测序 (RNA-Seq)来监控癌症基因表达和转录组改变,能帮助回答疾病分类和进展等研究问题。癌症积累了大量的遗传改变,但通常只有少数改变能真正推动肿瘤发展。

转化医学--复杂疾病研究
基因表达的差异与个体间的表型变异相关联。表达数量性状位点 (eQTL) 调控mRNA表达水平,让研究人员能有效地将表达水平定位到个体之间基因组中的差异。

基础研究--农业基因组学
RNA测序正在彻底改变动植物中基因表达的探索,为发育、疾病和压力状态下的表达水平改变提供新的见解。它可用于阐明基因和蛋白的功能及相互作用,鉴定动物或植物基因组所产生的组织特异的RNA转录本列表(mRNA、非编码RNA和小RNA),以及SNP发现。

基础研究--细胞生物学
核糖体轮廓分析是一种研究翻译调控(即基因表达的调控)的强大技术。这一应用通过估计蛋白质丰度和翻译调控,在基因组学/转录组与蛋白质组学之间架起桥梁,从而增加了从RNA-Seq中获得的mRNA丰度信息。

1. Ozsolak F, Milos PM. RNA‑Sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87‑98.
2. Wang Z, Gerstein M, Snyder M. RNA‑Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57‑63.
3. Wilhelm BT, Landry JR. RNA‑Seq—quantitative measurement of expression through massively parallel
RNA‑Sequencing. Methods. 2009;48:249‑57.
4. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA‑Seq and microarray in transcriptome profiling of activated T cells. PLoS One. 2014;16;9(1):e78644.
5. Wang C, Gong B, Bushel PR, et al. The concordance between RNA‑Seq and microarray data depends on
chemical treatment and transcript abundance. Nat Biotechnol. 2014;32:926-932.
6. Illumina (2014) TruSeq RNA Access Library Prep Kit Data Sheet. (www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet-truseq-rnaaccess.pdf).
7. Illumina (2011) RNA‑Seq Data Comparison with Gene Expression Microarrays White Paper (www.europeanpharmaceuticalreview.com/wp-content/uploads/Illumina_whitepaper.pdf).
8. Grant award data obtained from the NIH website (projectreporter.nih.gov). Accessed March 2016.

RNA测序相对基因表达芯片有什么优势?的更多相关文章

  1. RNA测序的质量控制

    RNA测序的质量控制 发表评论 3,112 A+ 所属分类:Transcriptomics   收  藏 ENCODE项目向我们揭示,人类基因组中超过70%能得到转录,只不过不会发生在同一个细胞里.为 ...

  2. RNA测序研究现状与发展

    RNA测序研究现状与发展 1 2,584 A+ 所属分类:Transcriptomics   收  藏 通常来说,某一个物种体内所有细胞里含有的DNA都应该是一模一样的,只是因为每一种细胞里所表达的R ...

  3. 单细胞RNA测序技术之入门指南

    单细胞RNA测序技术之入门指南 [字体: 大 中 小 ] 时间:2018年09月12日 来源:生物通   编辑推荐: 在这个飞速发展的测序时代,DNA和RNA测序已经逐渐成为“实验室中的家常菜”.若要 ...

  4. 第三章 RNA测序

    第三章 RNA测序   RNA测序(RNA Sequencing,简称RNA-Seq,也被称为全转录物组鸟枪法测序Whole Transcriptome Shotgun Sequencing,简称WT ...

  5. RNA测序样本检测

    常规转录组测序     样品类型:去蛋白并进行DNase处理后的完整总RNA 样品需求量(单次): 植物和真菌样品:≥20 μg: 人.大鼠.小鼠样品:≥5 μg: 其他类型动物:≥10 μg: 原核 ...

  6. RNA seq 两种计算基因表达量方法

    两种RNA seq的基因表达量计算方法: 1. RPKM:http://www.plob.org/2011/10/24/294.html 2. RSEM:这个是TCGAdata中使用的.RSEM据说比 ...

  7. 基因组表达分析:如何选择RNA-seq vs. 芯片

    基因组表达分析:如何选择RNA-seq vs. 芯片 发布日期:2017-03-29 10:00 DNA 芯片(上图左侧)由附着在表面的核酸探针组成.首先,从样品中提取 RNA 并转化为互补 DNA( ...

  8. 单细胞测序技术(single cell sequencing)

    单细胞测序技术(single cell sequencing) 2018-03-02 11:02   来源: 一呼百诺  点击次数:6587关键词:   前言 单细胞生物学最近几年是非常热门的研究方向 ...

  9. scRNA-seq测序的两种技术[转载]

    转自:http://www.ebiotrade.com/newsf/2017-9/201795172237350.htm 1.综述 哈佛大学的两个团队将微流体技术引入单细胞RNA-Seq方法中,分别开 ...

随机推荐

  1. setting 常用配置

    一,保存logging 信息 # 保存log信息的文件名 LOG_LEVEL = "INFO" LOG_STDOUT = True LOG_ENCODING = 'utf-8' # ...

  2. OCR技术浅探(转)

    网址:https://spaces.ac.cn/archives/3785 OCR技术浅探 作为OCR系统的第一步,特征提取是希望找出图像中候选的文字区域特征,以便我们在第二步进行文字定位和第三步进行 ...

  3. python字典dict的成对运算

    dict = {'age': 18, 'name': 'jin', 'sex': 'male', }# for k,v in dict.items():# print(k,v)# v1 = dict[ ...

  4. JS-cookie和正则表达式

    一 cookie 1 什么是cookie? 会话跟踪技术 2 作用 验证身份,存储信息. 3 特点 大小限制,最多存4k: 每个域下只能存50个cookie: 有时间限制: 只能存放字符串: 只能访问 ...

  5. 05_ssm基础(四)之Spring与持久层的整合

    30.31.spring对jdbc的支持jdbcTemplate 使用Spring的JDBC准备:  1):拷贝jar:       mysql-connector-java-5.1.11.jar:M ...

  6. Java 几种锁

    自旋锁 自旋锁顾名思义,它会等待一定时间(自旋),在这期中会什么都不做就是等资源被释放,好处在于没有了内核态用户态切换的效率损失,但是如果它一直不能访问到资源的话就会一直占用cpu资源,所以它会循环一 ...

  7. vi 基本命令使用

    vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本编辑器,这里只是简单地介绍一下它的用法和一小部分指令.由于对 Unix及Linux系统的任何版本,vi编辑器是完全 ...

  8. 58. Length of Last Word (String)

    Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the l ...

  9. java链接JDBC中的?问题

    String sql = "select * from student where name= ?"; PreparedStatement pst = conn.prepareSt ...

  10. Django的rest_framework的视图之Mixin类编写视图源码解析

    Mixin类编写视图 我们这里用auther表来做演示,先为auther和autherdetail写2个url url(r'^autherdetail/(?P<id>\d+)', view ...