k-center问题:

In graph theory, the metric k-center or metric facility location problem is a combinatorial optimization problem studied in theoretical computer science. Given n cities with specified distances, one wants to build k warehouses in different cities and minimize the maximum distance of a city to a warehouse. In graph theory this means finding a set of k vertices for which the largest distance of any point to its closest vertex in the k-set is minimum. The vertices must be in a metric space, providing a complete graph that satisfies the triangle inequality.

complete graph

G7, a complete graph with 7 vertices

The k-Center Clustering problem can also be defined on a complete undirected graph G = (V, E) as follows:

Given a complete undirected graph G = (V, E) with distances d(vi, vj) ∈ N satisfying the triangle inequality, find a subset CV with |C| = k while minimizing:

In a complete undirected graph G = (V, E), if we sort the edges in nondecreasing order of the distances: d(e1) ≤ d(e2) ≤ … ≤ d(em) and let Gi = (V, Ei), where Ei = {e1, e2, …, ei}. The k-center problem is equivalent to finding the smallest index i such that Gi has a dominating set of size at most k.

Dominating set:

In graph theory, a dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest dominating set for G.

Dominating sets (red vertices)

The dominating set problem concerns testing whether γ(G) ≤ K for a given graph G and input K; it is a classical NP-complete decision problem in computational complexity theory.Therefore it is believed that there may be no efficient algorithm that finds a smallest dominating set for all graphs, although there are efficient approximation algorithms, as well as both efficient and exact algorithms for certain graph classes.

Figures (a)–(c) on the right show three examples of dominating sets for a graph. In each example, each white vertex is adjacent to at least one red vertex, and it is said that the white vertex is dominated by the red vertex. The domination number of this graph is 2: the examples (b) and (c) show that there is a dominating set with 2 vertices, and it can be checked that there is no dominating set with only 1 vertex for this graph.

For Dominator in control flow graphs, see Dominator (graph theory).

来源于网络

k-center问题-学习的更多相关文章

  1. K线图学习

    本博文(适合入门的股民朋友)内容来自网络,股市有风险,入市需谨慎 一.起源 K线图(Candlestick Charts)又称蜡烛图.日本线.阴阳线.棒线等,常用说法是“K线”,起源于日本十八世纪德川 ...

  2. bzoj 1598: [Usaco2008 Mar]牛跑步 [k短路 A*] [学习笔记]

    1598: [Usaco2008 Mar]牛跑步 题意:k短路 ~~貌似A*的题目除了x数码就是k短路~~ \[ f(x) = g(x) + h(x) \] \(g(x)\)为到达当前状态实际代价,\ ...

  3. 机器学习2—K近邻算法学习笔记

    Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...

  4. The Preliminary Contest for ICPC Asia Xuzhou 2019 K. Center

    这题对于能加入最多边缘点的center点,这个点就是最优的center ,对于center点,总共是n^2的,顶多也就1e6,所以直接双重循环就行了, 然后map<pair,set >映射 ...

  5. 02-16 k近邻算法

    目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...

  6. 集成学习之Adaboost算法原理小结

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boostin ...

  7. 小K的H5之旅-实战篇(一)

    一.前言 本K在经过两个星期的html和css学习之后,第一次去尝试完成一个网站主页的制作.在四天之后,本K也终于完成了杰瑞教育主页的html和css部分,至于部分涉及js的部分,因为本K还没有学习过 ...

  8. 集成学习值Adaboost算法原理和代码小结(转载)

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...

  9. 4. 集成学习(Ensemble Learning)Adaboost

    1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...

  10. 何时开始phonics学习及配套阅读训练zz

    引子:自从11月份俱乐部第一批孩子开始英文阅读,到现在三.四个月的时间过去了.很多孩子从不知道怎么读绘本甚至排斥英语,到现在能很投入地看原版书, 有些甚至主动地去寻找拼读规律.我家小宝目前也从前期的阅 ...

随机推荐

  1. 自定义MVC框架之工具类-图像处理类

    截止目前已经改造了4个类: ubuntu:通过封装验证码类库一步步安装php的gd扩展 自定义MVC框架之工具类-分页类的封装 自定义MVC框架之工具类-文件上传类 图像处理类: 1,图片加水印处理( ...

  2. Codeforces500C(SummerTrainingDay01-G)

    C. New Year Book Reading time limit per test:2 seconds memory limit per test:256 megabytes input:sta ...

  3. 百度智能小程序弹窗组件wcPop|智能小程序自定义model弹窗模板

    百度智能小程序自定义弹窗组件wcPop|百度小程序model对话框|智能小程序弹窗界面模板 最近百度也推出了自己的智能小程序,如是就赶紧去试了下,官方提供的api还不是狠完整.而且官方提供的弹窗组件也 ...

  4. WebForms开发方式以及优缺点,来源《ASP.NET MVC企业级实战》

    WebForms有以下3种开发方式 1.服务器端控件 2.一般处理程序+HTML静态页+Ajax 3.一般处理程序+HTML模板 WebForms的请求的是具体的某一个文件.具体的一个类,由客户端发送 ...

  5. 地区picker 各选择器,优劣分析

    移动端选择器picker有很多,各大ui组件都有自己的picker,比如light7,HUI,MUI,jqueryUI等等.但是,我发现他们都有各种各样的问题.这次的地区选择,需要地区的省份+市+经纬 ...

  6. html 手机web超出屏幕宽度的内容不换行,并产生横向滚动条

     html 手机web超出屏幕宽度的内容不换行,并产生横向滚动条 white-space: nowrap;overflow-x: scroll;    

  7. SD从零开始29-30

    SD从零开始29 外向交货单处理中的特殊功能 批次Batches 你可以在material handled in batches的相关详细屏幕指定一个batch(物料是否使用batches来处理标记在 ...

  8. VMware 创建VMware9虚拟机及设置详细教程

    创建VMware9虚拟机及设置详细教程 by:授客 QQ:1033553122 1.点击Create a New Virtual Machine图标按钮,或者file->new virtual ...

  9. 原生JSON解析

    原生JSON解析 JSONObject:JSON数据封装对象JSONArray:JSON数据封装数组 布局: <?xml version="1.0" encoding=&qu ...

  10. flutter 异步async、await和Future的使用技巧

    由于前面的HTTP请求用到了异步操作,不少小伙伴都被这个问题折了下腰,今天总结分享下实战成果.Dart是一个单线程的语言,遇到有延迟的运算(比如IO操作.延时执行)时,线程中按顺序执行的运算就会阻塞, ...