k-center问题-学习
k-center问题:
In graph theory, the metric k-center or metric facility location problem is a combinatorial optimization problem studied in theoretical computer science. Given n cities with specified distances, one wants to build k warehouses in different cities and minimize the maximum distance of a city to a warehouse. In graph theory this means finding a set of k vertices for which the largest distance of any point to its closest vertex in the k-set is minimum. The vertices must be in a metric space, providing a complete graph that satisfies the triangle inequality.

G7, a complete graph with 7 vertices

The k-Center Clustering problem can also be defined on a complete undirected graph G = (V, E) as follows:
Given a complete undirected graph G = (V, E) with distances d(vi, vj) ∈ N satisfying the triangle inequality, find a subset C ⊆ V with |C| = k while minimizing:

In a complete undirected graph G = (V, E), if we sort the edges in nondecreasing order of the distances: d(e1) ≤ d(e2) ≤ … ≤ d(em) and let Gi = (V, Ei), where Ei = {e1, e2, …, ei}. The k-center problem is equivalent to finding the smallest index i such that Gi has a dominating set of size at most k.
Dominating set:
In graph theory, a dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest dominating set for G.

Dominating sets (red vertices)
The dominating set problem concerns testing whether γ(G) ≤ K for a given graph G and input K; it is a classical NP-complete decision problem in computational complexity theory.Therefore it is believed that there may be no efficient algorithm that finds a smallest dominating set for all graphs, although there are efficient approximation algorithms, as well as both efficient and exact algorithms for certain graph classes.
Figures (a)–(c) on the right show three examples of dominating sets for a graph. In each example, each white vertex is adjacent to at least one red vertex, and it is said that the white vertex is dominated by the red vertex. The domination number of this graph is 2: the examples (b) and (c) show that there is a dominating set with 2 vertices, and it can be checked that there is no dominating set with only 1 vertex for this graph.
For Dominator in control flow graphs, see Dominator (graph theory).
来源于网络
k-center问题-学习的更多相关文章
- K线图学习
		
本博文(适合入门的股民朋友)内容来自网络,股市有风险,入市需谨慎 一.起源 K线图(Candlestick Charts)又称蜡烛图.日本线.阴阳线.棒线等,常用说法是“K线”,起源于日本十八世纪德川 ...
 - bzoj 1598: [Usaco2008 Mar]牛跑步 [k短路 A*] [学习笔记]
		
1598: [Usaco2008 Mar]牛跑步 题意:k短路 ~~貌似A*的题目除了x数码就是k短路~~ \[ f(x) = g(x) + h(x) \] \(g(x)\)为到达当前状态实际代价,\ ...
 - 机器学习2—K近邻算法学习笔记
		
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...
 - The Preliminary Contest for ICPC Asia Xuzhou 2019 K. Center
		
这题对于能加入最多边缘点的center点,这个点就是最优的center ,对于center点,总共是n^2的,顶多也就1e6,所以直接双重循环就行了, 然后map<pair,set >映射 ...
 - 02-16 k近邻算法
		
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...
 - 集成学习之Adaboost算法原理小结
		
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boostin ...
 - 小K的H5之旅-实战篇(一)
		
一.前言 本K在经过两个星期的html和css学习之后,第一次去尝试完成一个网站主页的制作.在四天之后,本K也终于完成了杰瑞教育主页的html和css部分,至于部分涉及js的部分,因为本K还没有学习过 ...
 - 集成学习值Adaboost算法原理和代码小结(转载)
		
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...
 - 4. 集成学习(Ensemble Learning)Adaboost
		
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...
 - 何时开始phonics学习及配套阅读训练zz
		
引子:自从11月份俱乐部第一批孩子开始英文阅读,到现在三.四个月的时间过去了.很多孩子从不知道怎么读绘本甚至排斥英语,到现在能很投入地看原版书, 有些甚至主动地去寻找拼读规律.我家小宝目前也从前期的阅 ...
 
随机推荐
- Java - “JUC”锁
			
[Java并发编程实战]-----“J.U.C”:锁,lock 在java中有两种方法实现锁机制,一种是在前一篇博客中([java7并发编程实战]-----线程同步机制:synchronized) ...
 - 微信小程序点击图片放大预览
			
微信小程序点击图片放大预览使用到 wx.previewImage 接口,可以放大.上/下一张 上代码 wxml代码 <view class='content-img' wx:if="{ ...
 - BZOJ4358: permu(带撤销并查集 不删除莫队)
			
题意 题目链接 Sol 感觉自己已经老的爬不动了.. 想了一会儿,大概用个不删除莫队+带撤销并查集就能搞了吧,\(n \sqrt{n} logn\)应该卡的过去 不过不删除莫队咋写来着?....跑去学 ...
 - 【代码笔记】iOS-只让textField使用键盘通知
			
代码: #import "ViewController.h" @interface ViewController () @end @implementation ViewContr ...
 - hadoop在zookeeper上的高可用HA
			
(参考文章:https://www.linuxprobe.com/hadoop-high-available.html) 一.技术背景 影响HDFS集群不可用主要包括以下两种情况:一是NameNode ...
 - 防范跨站脚本攻击(XXS)的关键手段
			
1:加强对提交信息和页面显示信息的过滤,让非法提交内容无处施展: 2:让存储在cookie中的sessionid 无法被js 读取到. 如今的xss 相比网上很多资料中,在技术上已经发生了很大变化.由 ...
 - Impala随手记
			
最近开始使用Impala,基本完全兼容传统SQL,并且查询速度飞快,是Hive的良好替代: 1.登录及简单查询 impala-shell #列出数据库 show databases; #载入数据库 u ...
 - Nginx的rewrite(地址重定向)剖析
			
1.rewrite语法: 指令语法:rewrite regex replacement[flag]; 默认值:none 应用位置:server.location.if rewrite是实现URL重定向 ...
 - Spring Boot系列学习文章(一) -- Intellij IDEA 搭建Spring Boot项目
			
前言: 最近做的一个项目是用Spring Boot来做的,所以把工作中遇到的一些知识点.问题点整理一下,做成一系列学习文章,供后续学习Spring Boot的同仁们参考,我也是第一次接触Spring ...
 - Azure 中 Windows 虚拟机的大小
			
本文介绍可用于运行 Windows 应用和工作负荷的 Azure 虚拟机的可用大小和选项. 此外,还提供在计划使用这些资源时要考虑的部署注意事项. 本文也适用于 Linux 虚拟机. 类型 大小 说明 ...