【题解】 bzoj4033: [HAOI2015]树上染色* (动态规划)
Solution:
- 定义状态\(dp[i][j]\)表示\(i\)号节点为根节点的子树里面有\(j\)个黑色节点时最大的贡献值
- 然后我们要知道的就是子节点到根节点这条边会计算次数就是:子树中白色节点数\(*\)子树外白色节点数\(+\)子树中黑色节点数\(*\)子树外黑色节点数
\]
\]
Attention:
- 树上背包dp注意操作:
- 这样可以保证时间复杂度是\(O(n^2)\),每次会保证是从已经获得的dp值推向未知的,就不会有多余的操作,所以我们每次枚举要添加的节点数目,加到已经求出前面几棵子树节点数目中
for(int j=min(m,siz[u]);j>=0;j--){
int box=min(m,siz[v]);
for(int k=box;k>=0;k--){
dp[u][j+k]=max(dp[u][j+k],dp[u][j]+dp[v][k]+1ll*k*(m-k)*dis[v]+1ll*(siz[v]-k)*(n-m-siz[v]+k)*dis[v]);
}
}siz[u]+=siz[v];
Code:
//It is coded by Ning_Mew on 4.24
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn=2000+7;
int n,m,fa[maxn];
LL dp[maxn][maxn];
int siz[maxn],dis[maxn];
int head[maxn],cnt=0;
struct Edge{int nxt,to,dis;}edge[maxn*2];
void add(int from,int to,int dis){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
}
void dfs(int u){
siz[u]=1;//dp[u][0]=dp[u][1]=0;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to; if(v==fa[u])continue;
dis[v]=edge[i].dis; fa[v]=u;
dfs(v); //siz[u]+=siz[v];
for(int j=min(m,siz[u]);j>=0;j--){
int box=min(m,siz[v]);
for(int k=box;k>=0;k--){
dp[u][j+k]=max(dp[u][j+k],dp[u][j]+dp[v][k]+1ll*k*(m-k)*dis[v]
+1ll*(siz[v]-k)*(n-m-siz[v]+k)*dis[v]);
}
}siz[u]+=siz[v];
}return;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n-1;i++){
int u,v,diss;scanf("%d%d%d",&u,&v,&diss);
add(u,v,diss);add(v,u,diss);
}
dfs(1);
printf("%lld\n",dp[1][m]);
return 0;
}
【题解】 bzoj4033: [HAOI2015]树上染色* (动态规划)的更多相关文章
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- [bzoj4033][HAOI2015]树上染色_树形dp
树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...
- 洛谷P3177||bzoj4033 [HAOI2015]树上染色
洛谷P3177 bzoj4033 根本不会做... 上网查了题解,发现只要在状态定义的时候就考虑每一条边全局的贡献就好了? 考虑边的贡献和修改状态定义我都想到了,然而并不能想到要结合起来 ans[i] ...
- 【树形背包】bzoj4033: [HAOI2015]树上染色
仔细思考后会发现和51nod1677 treecnt有异曲同工之妙 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 ...
- [BZOJ4033]:[HAOI2015]树上染色(树上DP)
题目传送门 题目描述 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加 ...
- BZOJ4033 [HAOI2015]树上染色 【树形dp】
题目 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间 ...
- BZOJ4033 [HAOI2015]树上染色
本来是考虑, $ f[x][i][0/1] $ 表示 $ x $ 子树中有$i$个黑点,且 $ x $ 是白点/黑点.但是这里的答案是要统计不同的子树的贡献的.所以就gg了. 看了题解. 应该是要设$ ...
随机推荐
- html样式表格
<html><body><table border="1"> <tr height="20px"> &l ...
- SQL_sql语言的学习
关系数据库SQL sql基本功能 SQLde 基本概念 主要知识点 1.外模式包含若干视图和部分基本表 2.模式包含若干基本表 3.内模式包含若干存储文件 4操作对象 基本表:本身独立存在的表,一个关 ...
- # 20155337《网络对抗》Exp6 信息搜集与漏洞扫描
20155337<网络对抗>Exp6 信息搜集与漏洞扫描 实践目标 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测 ...
- Android开发——JobScheduler机制
年Google开发大会上指出,如果每个APP都使用这个API,那么可以节约15%到20%的电量. 2. JobScheduler拥有更多的触发选项 JobScheduler比AlarmManager ...
- 使用 vi/vim 时,粘贴进新创建文件或空文件的首行内容丢失的解决方法
只需要进入插入模式后,回车空一行或几行,再粘贴,再把上面的几个空行back回去,就不会丢失首行的内容了.
- [BZOJ4144][AMPPZ2014]Petrol[多源最短路+MST]
题意 题目链接 分析 假设在 \(a \rightarrow b\) 的最短路径中出现了一个点 \(x\) 满足到 \(x\) 最近的点是 \(c\) ,那么我们完全可以从 \(a\) 直接走到 \( ...
- kafka0.8--0.11各个版本特性预览介绍
kafka-0.8.2 新特性 producer不再区分同步(sync)和异步方式(async),所有的请求以异步方式发送,这样提升了客户端效率.producer请求会返回一个应答对象,包括偏移量或者 ...
- HTTP协议图--概述
1.计算机网络体系结构分层 2.TCP/IP 通信传输流 利用 TCP/IP 协议族进行网络通信时,会通过分层顺序与对方进行通信.发送端从应用层往下走,接收端则从链路层往上走.如下: 3.TCP/ ...
- 504. Base 7
Given an integer, return its base 7 string representation. Example 1: Input: 100 Output: "202&q ...
- 原生js实现table的排序
原生js实现table的排序 今天遇到了一个问题就是使用原生js对table标签进行排序 一开始的时候陷入了一个误区就是首先获取table,然后每次比较完大小都会交换children的值,准备到最后吧 ...