bzoj4033,懒得复制,戳我戳我

Solution:

  • 定义状态\(dp[i][j]\)表示\(i\)号节点为根节点的子树里面有\(j\)个黑色节点时最大的贡献值
  • 然后我们要知道的就是子节点到根节点这条边会计算次数就是:子树中白色节点数\(*\)子树外白色节点数\(+\)子树中黑色节点数\(*\)子树外黑色节点数

\[dp[u][j+k]=max(dp[u][j+k],
\]

\[dp[u][j]+dp[v][k]+(1ll)*k*(m-k)*dis[v]+(1ll)*(siz[v]-k)*(n-m-siz[v]+k)*dis[v])
\]

Attention:

  • 树上背包dp注意操作:
  • 这样可以保证时间复杂度是\(O(n^2)\),每次会保证是从已经获得的dp值推向未知的,就不会有多余的操作,所以我们每次枚举要添加的节点数目,加到已经求出前面几棵子树节点数目中
for(int j=min(m,siz[u]);j>=0;j--){
int box=min(m,siz[v]);
for(int k=box;k>=0;k--){
dp[u][j+k]=max(dp[u][j+k],dp[u][j]+dp[v][k]+1ll*k*(m-k)*dis[v]+1ll*(siz[v]-k)*(n-m-siz[v]+k)*dis[v]);
}
}siz[u]+=siz[v];

Code:

//It is coded by Ning_Mew on 4.24
#include<bits/stdc++.h>
#define LL long long
using namespace std; const int maxn=2000+7; int n,m,fa[maxn];
LL dp[maxn][maxn];
int siz[maxn],dis[maxn];
int head[maxn],cnt=0;
struct Edge{int nxt,to,dis;}edge[maxn*2]; void add(int from,int to,int dis){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
} void dfs(int u){
siz[u]=1;//dp[u][0]=dp[u][1]=0;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to; if(v==fa[u])continue;
dis[v]=edge[i].dis; fa[v]=u;
dfs(v); //siz[u]+=siz[v];
for(int j=min(m,siz[u]);j>=0;j--){
int box=min(m,siz[v]);
for(int k=box;k>=0;k--){
dp[u][j+k]=max(dp[u][j+k],dp[u][j]+dp[v][k]+1ll*k*(m-k)*dis[v]
+1ll*(siz[v]-k)*(n-m-siz[v]+k)*dis[v]);
}
}siz[u]+=siz[v];
}return;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n-1;i++){
int u,v,diss;scanf("%d%d%d",&u,&v,&diss);
add(u,v,diss);add(v,u,diss);
}
dfs(1);
printf("%lld\n",dp[1][m]);
return 0;
}

【题解】 bzoj4033: [HAOI2015]树上染色* (动态规划)的更多相关文章

  1. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  2. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  3. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  4. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  5. 洛谷P3177||bzoj4033 [HAOI2015]树上染色

    洛谷P3177 bzoj4033 根本不会做... 上网查了题解,发现只要在状态定义的时候就考虑每一条边全局的贡献就好了? 考虑边的贡献和修改状态定义我都想到了,然而并不能想到要结合起来 ans[i] ...

  6. 【树形背包】bzoj4033: [HAOI2015]树上染色

    仔细思考后会发现和51nod1677 treecnt有异曲同工之妙 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 ...

  7. [BZOJ4033]:[HAOI2015]树上染色(树上DP)

    题目传送门 题目描述 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加 ...

  8. BZOJ4033 [HAOI2015]树上染色 【树形dp】

    题目 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间 ...

  9. BZOJ4033 [HAOI2015]树上染色

    本来是考虑, $ f[x][i][0/1] $ 表示 $ x $ 子树中有$i$个黑点,且 $ x $ 是白点/黑点.但是这里的答案是要统计不同的子树的贡献的.所以就gg了. 看了题解. 应该是要设$ ...

随机推荐

  1. DD-WRT

    定时任务: 每日凌晨1點關, 星期1-, 上午7點半開, 8點半關, 晚上9點開 星期6/日, 上午開10點開 administration -> management -> enable ...

  2. 关于开发React Native的注意事项

    今天在写一个简单的RN的Demo时,一连出现了好几个错误,最后幸亏得以解决,在这里把我踩过的坑以及解决办法分享出来: 1.运行出现错误:Could not connect to development ...

  3. php web开发安全之sql注入和防范:(一)简单的select语句注入和防范

    sql注入主要是指通过在get.post请求参数中构造sql语句,以修改程序运行时所执行的sql语句,从而实现获取.修改信息甚至是删除数据的目的,sql被注入的原因主要是代码编写的有问题(有漏洞),只 ...

  4. XAMPP、PHPstorm和PHPcharm和Windows环境下Python搭建+暴力破解

    XAMPP的安装和使用 一.什么是XAMPP? XAMPP是最流行的PHP开发环境. XAMPP是完全免费且易于安装的Apache发行版,其中包含Apache.MariaDB.PHP和Perl. 类似 ...

  5. POJ 2388&&2299

    排序(水题)专题,毕竟如果只排序不进行任何操作都是极其简单的. 事实上,排序算法十分常用,在各类高级的算法中往往扮演着一个辅助的部分. 它看上去很普通,但实际的作用却很大.许多算法在失去排序后将会无法 ...

  6. mysql提示Fatal error: Can't open and lock privilege tables: Table 'mysql.host' doesn't exist解决方法

    一次重启mysql发现无法启动成功,通过检查mysql日志发现问题并解决了问题. mysql启动失败的日志: [root@nn ~]# tail -n 20 /var/log/mysqld.log 1 ...

  7. Linux每天一个命令:tar

    Linux tar命令简介: tar命令可以为linux的文件和目录创建档案.利用tar,可以为某一特定文件创建档案(备份文件),也可以在档案中改变文件,或者向档案中加入新的文件.tar最初被用来在磁 ...

  8. JavaScript实现选项卡(三种方法)

    本文实例讲述了js选项卡的实现方法. 一.html代码: <div id="div1"> <input class="active" type ...

  9. 基于AngularJs的单页面程序

    基于AngularJs的单页面程序 在Abpzero的后台管理系统是一个AngularJs的单页面程序.当你登陆后,系统会跳转到"ApplicationController",然后 ...

  10. 【Android UI设计与开发】第01期:引导界面(一)ViewPager介绍和使用详解

    做Android开发加起来差不多也有一年多的时间了,总是想写点自己在开发中的心得体会与大家一起交流分享.共同进步,刚开始写也不知该如何下手,仔细想了一下,既然是刚开始写,那就从一个软件给人最直观的感受 ...