洛谷P4486 Kakuro
题意:你有一个棋盘,某些格子是限制条件,形如"从这里开始下面所有连续空格的和为a"或"从这里开始向右的所有连续空格之和为b"一个格子可以同时拥有两个限制条件。
每个数都必须是正整数。
现在你可以把某些格子加/减1,并花费相应的代价。可以操作无数次。求把棋盘变得合法的最小代价。
解:没想出来,看了题解......
一开始想了数字和条件构成二分图,又想了行列连边,但是始终建不出图来。
行列连边。
因为既可以加又可以减不好搞,我们可以先全部转换成满足条件的最小值,然后往上加。
从最小值到初始值的时候,边权为负。之后边权为正。
不可修改的地方边权为INF。
然后跑一个最小费用可行流就是答案。
如何判断无解?
考虑每条边,如果有的边费用为INF但是有流量,就不合法。
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring> typedef long long LL;
const LL N = , M = , INF = 0x3f3f3f3f, J = ; struct Edge {
LL nex, v, c, len;
}edge[N << ]; LL top = ; LL e[N], d[N], vis[N], pre[N], flow[N];
std::queue<LL> Q;
LL fr[J][J], val[J][J], v2[J][J], cst[J][J], c2[J][J], m; inline void add(LL x, LL y, LL z, LL w) {
top++;
edge[top].v = y;
edge[top].c = z;
edge[top].len = w;
edge[top].nex = e[x];
e[x] = top; top++;
edge[top].v = x;
edge[top].c = ;
edge[top].len = -w;
edge[top].nex = e[y];
e[y] = top;
return;
} inline bool SPFA(LL s, LL t) {
memset(d, 0x3f, sizeof(d));
d[s] = ;
flow[s] = INF;
vis[s] = ;
Q.push(s);
while(!Q.empty()) {
LL x = Q.front();
Q.pop();
vis[x] = ;
for(LL i = e[x]; i; i = edge[i].nex) {
LL y = edge[i].v;
if(edge[i].c && d[y] > d[x] + edge[i].len) {
d[y] = d[x] + edge[i].len;
pre[y] = i;
flow[y] = std::min(flow[x], edge[i].c);
if(!vis[y]) {
vis[y] = ;
Q.push(y);
}
}
}
}
return d[t] < INF;
} inline void update(LL s, LL t) {
LL temp = flow[t];
while(t != s) {
LL i = pre[t];
edge[i].c -= temp;
edge[i ^ ].c += temp;
t = edge[i ^ ].v;
}
return;
} inline LL solve(LL s, LL t, LL &cost) {
LL ans = ;
cost = ;
while(SPFA(s, t)) {
if(d[t] > ) {
break;
}
ans += flow[t];
cost += flow[t] * d[t];
update(s, t);
}
return ans;
} inline LL id(LL x, LL y) {
return (x - ) * m + y;
} int main() {
LL n, use = ;
scanf("%lld%lld", &n, &m);
for(LL i = ; i <= n; i++) {
for(LL j = ; j <= m; j++) {
scanf("%lld", &fr[i][j]);
}
}
for(LL i = ; i <= n; i++) {
for(LL j = ; j <= m; j++) {
if(fr[i][j] == ) {
continue;
}
else if(fr[i][j] == ) {
scanf("%lld", &val[i][j]);
}
else if(fr[i][j] == ) {
scanf("%lld", &v2[i][j]);
}
else if(fr[i][j] == ) {
scanf("%lld%lld", &val[i][j], &v2[i][j]);
}
else {
scanf("%lld", &val[i][j]);
}
}
}
for(LL i = ; i <= n; i++) {
for(LL j = ; j <= n; j++) {
if(fr[i][j] == ) {
continue;
}
else if(fr[i][j] == ) {
scanf("%lld", &cst[i][j]);
}
else if(fr[i][j] == ) {
scanf("%lld", &c2[i][j]);
}
else if(fr[i][j] == ) {
scanf("%lld%lld", &cst[i][j], &c2[i][j]);
}
else {
scanf("%lld", &cst[i][j]);
}
if(cst[i][j] == -) {
cst[i][j] = INF;
}
if(c2[i][j] == -) {
c2[i][j] = INF;
}
}
}
// read over
LL lm = n * m;
LL s = lm * + ;
LL t = s + ;
for(LL i = ; i <= n; i++) {
for(LL j = ; j <= m; j++) {
if(fr[i][j] == ) {
continue;
}
if(fr[i][j] == || fr[i][j] == ) {
// id(i, j)
LL cnt = ;
for(LL k = i + ; k <= n; k++) {
if(fr[k][j] == ) {
cnt++;
}
else {
break;
}
}
// val[i][j] - cnt
if(val[i][j] > cnt) {
add(s, id(i, j), val[i][j] - cnt, -cst[i][j]);
}
add(s, id(i, j), INF, cst[i][j]);
use += cst[i][j] * abs(val[i][j] - cnt);
}
if(fr[i][j] == || fr[i][j] == ) {
LL cnt = ;
for(LL k = j + ; k <= m; k++) {
if(fr[i][k] == ) {
cnt++;
}
else {
break;
}
}
if(v2[i][j] > cnt) {
add(id(i, j) + lm, t, v2[i][j] - cnt, -c2[i][j]);
}
add(id(i, j) + lm, t, INF, c2[i][j]);
use += c2[i][j] * abs(v2[i][j] - cnt);
}
if(fr[i][j] == ) {
LL a, b;
for(LL k = i - ; k >= ; k--) {
if(fr[k][j] == || fr[k][j] == ) {
a = id(k, j);
break;
}
}
for(LL k = j - ; k >= ; k--) {
if(fr[i][k] == || fr[i][k] == ) {
b = id(i, k) + lm;
break;
}
}
if(val[i][j] > ) {
add(a, b, val[i][j] - , -cst[i][j]);
}
add(a, b, INF, cst[i][j]);
use += cst[i][j] * abs(val[i][j] - );
}
}
} LL ans;
solve(s, t, ans);
ans += use; /*if(ans >= INF) {
puts("-1");
return 0;
}*/
for(int i = ; i <= top; i += ) {
if(abs(edge[i].len) == INF && (edge[i].c && edge[i ^ ].c)) {
puts("-1");
return ;
}
} printf("%lld", ans);
return ;
}
AC代码
思考:能否不转换为最小?好像无法判断是否合法...
洛谷P4486 Kakuro的更多相关文章
- Solution -「BJWC 2018」「洛谷 P4486」Kakuro
\(\mathcal{Description}\) Link. 有一个 \(n\times m\) 的网格图,其中某些格子被主对角线划成两个三角形,称这样的格子为特殊格:初始时,除了一些障碍格 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
- 洛谷P1538迎春舞会之数字舞蹈
题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...
- 洛谷八月月赛Round1凄惨记
个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...
随机推荐
- python基础4之递归、lambda、深浅copy
内容概要: 一.递归 二.匿名函数 三.关于python中的深浅拷贝与赋值 一.递归 递归就是函数本身调用自己,直到满足指定条件之后一层层退出函数 递归特性: 必须有一个明确的结束条件 每次进入更深一 ...
- 20155325 Exp7 网络欺诈防范
实践内容(3.5分) 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建立冒名网站 (1分) (2)ettercap DNS spoof ...
- HNOI2019 摸鱼记
感觉准备省选时有点浮躁,没有准备联赛时那样认真, 希望能将这次省选当做一个教训吧QAQ. Day -inf 基本上把要学的东西都学了,至少做到了自己心里有底. Day 0 乒乓球室没开差评,打隔膜不带 ...
- JS设置状态栏
JS设置状态栏可通过window.status = str来设置,在后台可通过 ClientScript.RegisterStartupScript( this.GetType(), "12 ...
- [CF1060E]Sergey and Subway[树dp]
题意 给出 \(n\) 个点的树,求 \(\sum_{i=1}^n{\sum_{j=i}^n{\lceil \frac{dis(i,j)}{2} \rceil}}\) . \(n\leq 2 \tim ...
- Js_图片轮播
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- live555学习(一)通读Makefile编译live555
live555学习(一)通读Makefile编译live555 live555 编译live555 学习开源 live555学习(一)通读Makefile编译live555 前言 live555简介 ...
- Web Workers文档
Web Worker为Web内容在后台线程中运行脚本提供了一种简单的方法.线程可以执行任务而不干扰用户界面.此外,他们可以使用XMLHttpRequest执行 I/O (尽管responseXML和 ...
- PAT甲题题解-1115. Counting Nodes in a BST (30)-(构建二分搜索树+dfs)
题意:给出一个序列,构建二叉搜索树(BST),输出二叉搜索树最后两层的节点个数n1和n2,以及他们的和sum: n1 + n2 = sum 递归建树,然后再dfs求出最大层数,接着再dfs计算出最后两 ...
- 冲刺Two之站立会议8
今天对软件进行了用户试用,找了一些同学让他们试用软件之后对软件给出了建议,这样我们可以在一定程度上对它进行进一步地优化.