POJ 1087 A Plug for UNIX / HDU 1526 A Plug for UNIX / ZOJ 1157 A Plug for UNIX / UVA 753 A Plug for UNIX / UVAlive 5418 A Plug for UNIX / SCU 1671 A Plug for UNIX (网络流)

Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible.

Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs: laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling

irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can.

Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug.

In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric

characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available. Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4

A

B

C

D

5

laptop B

phone C

pager B

clock B

comb X

3

B X

X A

X D

Sample Output

1

Http

POJ:https://vjudge.net/problem/POJ-1087

HDU:https://vjudge.net/problem/HDU-1526

ZOJ:https://vjudge.net/problem/ZOJ-1157

UVA:https://vjudge.net/problem/UVA-753

UVAlive:https://vjudge.net/problem/UVALive-5418

SCU:https://vjudge.net/problem/SCU-1671

Source

网络流,最大流

题目大意

现在提供若干规格确定的插座,电器以及插座转换器,其中转换器数量无限。每个插座只能给一个电器插电,转换器可以叠加。现在求不能连接上电的电器数量最小值。

解决思路

这道题想复杂了,之前还想着要把转换器拆成两个点来处理,其实不用。

我们将源点与每一个插座之间连一条流量为1的边(因为一个电器只能供一个,所以可以理解为只提供一个电流)

然后我们对于每一种转换器将对应的插座连上,注意,因为这个时候可能出现转换器转换后出现插座中没出现过的规格。

我们再对每一种电器和它可以匹配的插座或转换器规格连一条容量无穷的边。这里为什么要连无穷大呢?因为在用转换器转换过后可能从别的地方连过来一条边。

最后再在电器与汇点之间连容量为1的边。

需要注意的是,我们要用一个变量n12记下插座数,用n1记下插座数+转换器中新出现的规格数,因为只能在插座与源点之间连线,但可以在任意规格与电器之间连线。

还有一些细节问题,如是否有多组数据,是否有行末换行与组数之间的换行。

虽然笔者是用EK算法实现的最大流,但更推荐的是效率更好的Dinic算法,具体请移步我的这篇文章

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
#include<string>
#include<vector>
#include<queue>
using namespace std; const int maxN=2000;
const int inf=2147483647; class Edge
{
public:
int v,w;
}; int n1,n2,n3;//这三个变量插座,转换器,电器
int n12;//在读入n1后就复制到这里,因为后面可能会改变n1的值
int R1[maxN];//读入插座规格
int R2[maxN];//读入电器规格
int R3[maxN][3];//R3[i][1]代表i号转换器提供的插座规格,R3[i][2]表示i号转换器需要的插座规格
int G[maxN][maxN];
map<string,int> Map;//用于将字符串编号
int Path[maxN];
int Flow[maxN]; bool bfs(); int main()
{
int T;
cin>>T;//多组数据,POJ没有,注释掉相关行即可
for (int ti=1;ti<=T;ti++)
{
Map.clear();
memset(G,0,sizeof(G));
scanf("%d",&n1);
for (int i=1;i<=n1;i++)//读入插座规格
{
string str;
cin>>str;
Map[str]=i;
R1[i]=i;
}
n12=n1;//保存一下,下面要用
scanf("%d",&n2);
for (int i=1;i<=n2;i++)//读入电器
{
string str;
cin>>str;//这个名字其实没有用
cin>>str;
int k;
if (Map[str]==0)//遇到之前没有出现的规格要新分配编号。注意这里有可能改变了n1
k=Map[str]=++n1;
else
k=Map[str];
R2[i]=k;
}
scanf("%d",&n3);
for (int i=1;i<=n3;i++)//读入转换器
{
string str;
cin>>str;
if (Map[str]==0)//同样遇到之前没有出现过的要新分配编号
Map[str]=++n1;
R3[i][1]=Map[str];
cin>>str;
if (Map[str]==0)
Map[str]=++n1;
R3[i][2]=Map[str];
}
//cout<<n1<<' '<<n2<<' '<<n3<<endl;
for (int i=1;i<=n12;i++)//只能在插座与源点之间连边
G[0][i]=1;
for (int i=1;i<=n12;i++)//在插座与对应的电器之间连边
for (int j=1;j<=n2;j++)
if (R1[i]==R2[j])
G[i][j+n1]=inf;
for (int i=n12+1;i<=n1;i++)//在新出现的规格与电器之间连边
for (int j=1;j<=n2;j++)
if (i==R2[j])
G[i][j+n1]=inf;
for (int i=1;i<=n3;i++)//在转换器对应的插座规格之间连边
G[R3[i][2]][R3[i][1]]=inf;
for (int i=1;i<=n2;i++)
G[i+n1][n1+n2+1]=1;
//for (int i=0;i<=n1+n2+1;i++)
//{
// for (int j=0;j<=n1+n2+1;j++)
// cout<<G[i][j]<<' ';
// cout<<endl;
// }
int Ans=0;
while (bfs())//EK算法求最大流
{
int di=Flow[n1+n2+1];
int now=n1+n2+1;
int last=Path[now];
while (now!=0)
{
G[last][now]-=di;
G[now][last]+=di;
now=last;
last=Path[now];
}
Ans+=di;
}
cout<<n2-Ans<<endl;
if (ti!=T)//注意,如果是多组数据时最后一个不要多输出一个空行
cout<<endl;
}
return 0;
} bool bfs()//bfs求增广路
{
memset(Path,-1,sizeof(Path));
memset(Flow,0,sizeof(Flow));
queue<int> Q;
while (!Q.empty())
Q.pop();
Q.push(0);
Flow[0]=inf;
Path[0]=0;
do
{
int u=Q.front();
Q.pop();
for (int i=0;i<=n1+n2+1;i++)
if ((Path[i]==-1)&&(G[u][i]>0))
{
Path[i]=u;
Flow[i]=min(Flow[u],G[u][i]);
Q.push(i);
}
}
while (!Q.empty());
if (Flow[n1+n2+1]==0)
return 0;
return 1;
}

POJ 1087 A Plug for UNIX / HDU 1526 A Plug for UNIX / ZOJ 1157 A Plug for UNIX / UVA 753 A Plug for UNIX / UVAlive 5418 A Plug for UNIX / SCU 1671 A Plug for UNIX (网络流)的更多相关文章

  1. POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)

    POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...

  2. 【网络流#4】UVA 753 最大流

    最近开始刷网络流的题目了,先从紫书上的开始,这道题是P374上的,嘛,总之这道题最终还是参考了一下紫书. 中间是用了STL中map将字符串映射成编号,使用编号总比是用字符串简单的多. 超级源点S与各个 ...

  3. poj 1087 C - A Plug for UNIX 网络流最大流

    C - A Plug for UNIXTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contes ...

  4. POJ 1087 A Plug for UNIX (网络流,最大流)

    题面 You are in charge of setting up the press room for the inaugural meeting of the United Nations In ...

  5. (网络流 模板)A Plug for UNIX -- poj -- 1087

    链接: http://poj.org/problem?id=1087 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...

  6. C - A Plug for UNIX POJ - 1087 网络流

    You are in charge of setting up the press room for the inaugural meeting of the United Nations Inter ...

  7. kuangbin专题专题十一 网络流 POJ 1087 A Plug for UNIX

    题目链接:https://vjudge.net/problem/POJ-1087 题目:有n个插座,插座上只有一个插孔,有m个用电器,每个用电器都有插头,它们的插头可以一样, 有k个插孔转化器, a ...

  8. UVA 753 A Plug for UNIX 电器插座(最大基数匹配,网络流)

    题意: 给n个插座,m个设备(肯定要插电了),k种转换头可无限次使用(注意是单向的),问有多少设备最终是不能够插上插座的? 分析: 看起来就是设备匹配插座,所以答案不超过m.这个题适合用网络流来解. ...

  9. UVA 753 - A Plug for UNIX(网络流)

      A Plug for UNIX  You are in charge of setting up the press room for the inaugural meeting of the U ...

随机推荐

  1. 20155232《网络对抗》Exp5 MSF基础应用

    20155232<网络对抗>Exp5 MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode. exploit:就是利用可能存在的漏洞对目标进行攻击 ...

  2. InkCanvas控件的使用

    原文:InkCanvas控件的使用 ==>InkCanvas设置位置跟Canvas一样.通过InkCanvas.Top之类的设置,需要设置的属性有EditingMode,来自于InkCanvas ...

  3. sql查询语句示例

    今天没事又专门学习了一下sql查询语句,个人感觉太重要了,于是就找了网上的一个示例自己练了起来,感觉学到了很多,下面跟大家分享一下sql查询语句的示例操作. 首先,我建了5张表,分别如下: (a)学生 ...

  4. POJ 3278&&2049&&3083

    这次的题目叫图的深度&&广度优先遍历. 然后等我做完了题发现这是DFS&&BFS爆搜专题. 3278:题目是经典的FJ,他要抓奶牛.他和牛(只有一头)在一条数轴上,他们 ...

  5. 如何取得Oracle并行执行的trace

    如何取得Oracle并行执行的trace: ALTER SESSION SET tracefile_identifier='10046_PROD';ALTER SESSION SET max_dump ...

  6. 部署AlwaysOn第二步:配置AlwaysOn,创建可用性组

    AlwaysOn是在SQL Server 2012中新引入的一种高可用技术,从名称中可以看出,AlwaysOn的设计目标是保持数据库系统永远可用.AlwaysOn利用了Windows服务器故障转移集群 ...

  7. Docker_容器化gitlab

    Docker部署接口自动化持续集成环境第一步,容器化一个Gitlab! 1:开放防火墙端口 sudo yum install curl openssh-server openssh-clients p ...

  8. jira webhook 事件触发并程序代码调用jenkins接口触发构建操作

    要解决的问题 开发管理工具触发站点构建事件,事件处理中需要调用Jenkins接口开始构建动作. 我的应用场景: 使用jira作为管理工具,在jira中创建自定义的工作流来规定测试,上线,发布等流程,并 ...

  9. JavaWeb项目学习教程(1) 准备阶段

    写在最前面 为什么要写一个这样的教程?作为一个软件工程专业的学生,上课老师讲得飞快,几乎都是在课后自己消化,我知道学习记录的重要性.我自己本身还有很多很多基础的东西都没有学会,比较博客园的人有很大的差 ...

  10. M2 Daily SCRUM要求

    每个人的工作 (有work item 的ID):昨天已完成的工作,今天计划完成的工作:工作中遇到的困难. 燃尽图 照片 每人的代码/文档签入记录(不能每天都在 “研讨”, 但是没有代码签入) 如实报告 ...