HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的区间DP问题 d
p[i][j]表示前i个节点,分为j个区间的最优策略值 cost[i][j]为从i到j节点的策略值 所以dp[i][j] = min(dp[k-1][j-1] + cost[k][i]
但是复杂度太高了 可以优化的地方有: cost数组值得求取: 考虑到cost(i,j)=ΣAxAy (i≤x<y≤j) 而(Ai+...+Aj)^2=ΣAxAy (i≤x,y≤j) 于是可以得到: cost(i,j)=((Ai+...+Aj)^2-(Ai^2+...+Aj^2))/2 这是一个优化后线性n的等式 式子中的若干连续项的和与若干连续项的平方和 是可以用 前缀和 预先处理的, 所以设sum(i)=A1+...+Ai,sqsum(i)=A1^2+...+Ai^2, 将原式化为: cost(i,j)=((sum(j)-sum(i-1))^2-(sqsum(j)-sqsum(i-1)))/2
又因为是经典的区间DP问题所以可以用四边形不等式进行优化
设s[i][j]为dp[i][j]的前导状态dp[i][j] = dp[s[i][j][j-1] + cost[s[i][j]+1][j]之后我们枚举k的时候只要枚举s[i][j-1]<=k<=s[i+1][j],此时j必须从小到大遍历i必须从大到小。
#include <iostream>
#include <algorithm>
#include <string.h>
#include <cstdio>
#define inf (1 << 30)
using namespace std;
const int maxn = 1e3 + 1e2;
int dp[maxn][maxn];
int s[maxn][maxn];
//设s[i][j]为dp[i][j]的前导状态
//dp[i][j] = dp[s[i][j][j-1] + cost[s[i][j]+1][j]
//之后我们枚举k的时候只要枚举
//s[i][j-1]<=k<=s[i+1][j],此时j必须从小到大遍历
//i必须从大到小。
int cost[maxn][maxn];
int sum[maxn],powsum[maxn];
int a[maxn];
/*int get_cost(int l,int r)
{
if(r < l)return 0;
return ((sum[r] - sum[l-1]) * (sum[r] - sum[l-1]) - (powsum[r] - powsum[l-1])) / 2;
}*/
void init()
{
memset(sum,0,sizeof(sum));
memset(powsum,0,sizeof(powsum));
memset(cost,0,sizeof(cost));
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{ if(n == m && n == 0)break;
init();
//m++;
//前缀和处理
for(int i = 1;i <= n;i++)
{
scanf("%d",&a[i]);
sum[i] = sum[i-1] + a[i];
powsum[i] = powsum[i-1] + a[i] * a[i];
} /*for(int i = 1;i <= n;i++)
for(int j = 1;j <= n;j++)
{
if(j < i) cost[i][j] = 0;
else cost[i][j] = cost[i][j-1] + a[j] * (sum[j-1] - sum[i-1]);
}*/
//特殊值预处理
//这里没有m++但是0代表分一块
for(int i = 0;i <= n;i++)
{
dp[i][0] = cost[1][i];
// dp[i][0] = get_cost(1,i);
s[i][0] = 0;
s[n+1][i] = n;//外面的界限出界后的特殊处理
}
//区间DP & 四边形不等式
for(int j = 1;j <= m;j++)//分几部分
{
for(int i = n;i >= 1;i--)//前n个节点
{
dp[i][j] = inf;
for(int k = s[i][j-1];k <= s[i+1][j];k++)
{
if(dp[i][j] > dp[k][j-1] + get_cost(k+1,i))
{
dp[i][j] = dp[k][j-1] + get_cost(k+1,i);
s[i][j] = k;//确定上一个状态
}
}
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化的更多相关文章
- 区间DP石子合并问题 & 四边形不等式优化
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...
- 区间dp+四边形不等式优化
区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n ...
- [51nod 1022] 石子归并v2 [dp+四边形不等式优化]
题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】
问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...
- 二叉搜索树 [四边形不等式优化区间dp]
二叉搜索树 [四边形不等式优化区间dp] 题目描述 有 \(n\) 个结点,第 \(i\) 个结点的权值为 \(i\) . 你需要对它们进行一些操作并维护一些信息,因此,你需要对它们建立一棵二叉搜索树 ...
- 区间dp之四边形不等式优化详解及证明
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1] ...
- 区间DP的四边形不等式优化
今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:
随机推荐
- (转)easyui datagrid 部分参数说明
easyui datagrid 部分参数 数据表格属性(DataGrid Properties) 属性继承控制面板,以下是数据表格独有的属性. 名称 类型 描述 默认值 columns array 数 ...
- Tinyos学习笔记(一)
简述:发送和接受数据的程序分别烧录到两个节点上,发送方发送流水灯数据,接受方接受数据并实现流水灯 1.发送和接受程序用到的组件及其接口如图(通过make telosb docs获得)所示: 2.发 ...
- Servlet会话管理二(Cookie)
Cookie是在HTTP协议下,将服务器传递给浏览器的的少量信息保存到浏览器客户端的一种技术,通过这种技术,即使在浏览器被关闭或链接中断的情况下,用户仍可以维护Cookie中的数据. Cookie是经 ...
- swift textfiled 输入完毕 return 隐藏键盘 方法
学习swift 真是件头疼的事情 会的人少,又没有OC基础,所以 且学切珍惜吧. 在做登录的时候发现textfiled 自动调用键盘后不能隐藏?头疼 ~~~~询问了好多人 终于有人自写解答 为了方便后 ...
- Android Studio Tip of the Day
1. Alt + Q 可以查看一个方法的简单参数列表. 2. 查看一个类,如果是eclipse的话,一般直接是F3, 现在的F3好痛苦.只能改为Ctrl + H,将就着用. 3. Ctrl + J 语 ...
- iphone手机safari浏览器访问网站滚动条不显示问题解决办法
近排有公司同事出差在外需使用OA系统,发现iphone手机safari浏览器在该出现滚动条的页面没有显示滚动条,导致无法正常使用. 系统前端页面是采用jeasyui搭建的框架,使用iframe变更主页 ...
- Sharing Code Between Silverlight and WPF
一个很好的列子: http://www.codeproject.com/Articles/254506/XAMLFinance-A-Cross-platform-WPF-Silverlight-WP7 ...
- [C#]RichTextBox实现拖放
amespace WindowsFormsApplication1 { public partial class Form1 : Form { public Form1() { InitializeC ...
- MySQL中使用SHOW PROFILE命令分析性能的用法整理
show profile是由Jeremy Cole捐献给MySQL社区版本的.默认的是关闭的,但是会话级别可以开启这个功能.开启它可以让MySQL收集在执行语句的时候所使用的资源.为了统计报表,把pr ...
- python之常用模块篇5
一.日志模块,logging模块 1)logging模块简单使用,屏幕输出.默认级别30 import logging logging.debug( logging.info( logging.war ...