clc
clear
syms x y z r1 r2 w
f=x^+y^+z^+w^;
g1=*x-y+z-w-;
g2=x+y-z+w-;
h=f-r1*g1 -r2*g2; hx=diff(h,x);
hy=diff(h,y);
hz=diff(h,z);
hw=diff(h,w);
hr1=diff(h,r1);
hr2=diff(h,r2); r=solve([hx==,hy==,hz==,hw==,hr1==,hr2==],[x,y,z,w,r1,r2]); arr_x=double(r.x)
arr_y=double(r.y)
arr_z=double(r.z)
arr_w=double(r.w) arr_fv=[];
for i= : length(arr_x)
xv=arr_x(i);
yv=arr_y(i);
zv=arr_z(i);
wv=arr_w(i);
fv=subs(f,[x,y,z,w],[xv,yv,zv,wv]);
arr_fv(i)= double(fv);
g1v=subs(g1,[x,y,z,w],[xv,yv,zv,wv])
g2v=subs(g2,[x,y,z,w],[xv,yv,zv,wv])
end
arr_fv
disp('after sort:')
sort(arr_fv)

Lagrange 乘子法求最优解的更多相关文章

  1. 增强拉格朗日乘子法(Augmented Lagrange Method)

    增强拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格 ...

  2. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  3. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  4. 增广拉格朗日乘子法(Augmented Lagrange Method)

    转载自:增广拉格朗日乘子法(Augmented Lagrange Method) 增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t ...

  5. Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  6. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  7. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...

  8. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  9. 拉格朗日乘子法(Lagrange Multiplier)和KKT条件

    拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其 ...

随机推荐

  1. Android模拟器故障:waiting for target deviceto come online

    关闭再打开模拟器.删除再新建模拟器均无效. 解决办法:在AVD Manager中,选择立即冷启动(Cold Boot Now)模拟器.

  2. swift - 百度地图API集成

    1.百度搜索  百度地图api 2. 选中之后选择, 看功能需求下载 API 3. 下载的API拖入项目,此处有坑, 如果只用地图或者 定位,这中写着 是 导航的SDK 别拖进去, 不然报错 怕搞错到 ...

  3. Django创建模型,迁移数据

    1.在models.py文件中添加代码 class notice(models.Model): notice_title = models.CharField(max_length=255) noti ...

  4. AngularJS——第4章 数据绑定

    第4章 数据绑定 AngularJS是以数据做为驱动的MVC框架,所有模型(Model)里的数据经由控制器(Controller)展示到视图(View)中. 所谓数据绑定指的就是将模型(Model)中 ...

  5. MongoDB的索引(六)

    数据准备:在mongodb命令行终端执行如下代码 for(var i=0;i<100000;i++) { ... db.users.insert({username:"user&quo ...

  6. 26- java的String 转json

    https://www.cnblogs.com/nihaorz/p/5885307.html Gjson 下载:https://download.csdn.net/download/qq_394515 ...

  7. 纯css背景图自适应

    只需要这样设置即可,只要你的图片足够大的话可以无限缩小,当不在缩小的时候则跟你的实际图片大小有关系

  8. 简述 OAuth 2.0 的运作流程(转)

    原文地址:http://www.barretlee.com/blog/2016/01/10/oauth2-introduce/ 本文将以用户使用 github 登录网站留言为例,简述 OAuth 2. ...

  9. 关于Vector,map等迭代器问题

    vector.erase(it):后,it自动++,一定要弄清楚,删除成功后it指向删除的下一个地址. 对于map.erase(it),返回值为NULL,而Vector是返回itorator

  10. java中 this 关键字的三种用法

    Java中this的三种用法 调用属性 (1)this可以调用本类中的任何成员变量 调用方法(可省略) (2)this调用本类中的成员方法(在main方法里面没有办法通过this调用) 调用构造方法 ...