clc
clear
syms x y z r1 r2 w
f=x^+y^+z^+w^;
g1=*x-y+z-w-;
g2=x+y-z+w-;
h=f-r1*g1 -r2*g2; hx=diff(h,x);
hy=diff(h,y);
hz=diff(h,z);
hw=diff(h,w);
hr1=diff(h,r1);
hr2=diff(h,r2); r=solve([hx==,hy==,hz==,hw==,hr1==,hr2==],[x,y,z,w,r1,r2]); arr_x=double(r.x)
arr_y=double(r.y)
arr_z=double(r.z)
arr_w=double(r.w) arr_fv=[];
for i= : length(arr_x)
xv=arr_x(i);
yv=arr_y(i);
zv=arr_z(i);
wv=arr_w(i);
fv=subs(f,[x,y,z,w],[xv,yv,zv,wv]);
arr_fv(i)= double(fv);
g1v=subs(g1,[x,y,z,w],[xv,yv,zv,wv])
g2v=subs(g2,[x,y,z,w],[xv,yv,zv,wv])
end
arr_fv
disp('after sort:')
sort(arr_fv)

Lagrange 乘子法求最优解的更多相关文章

  1. 增强拉格朗日乘子法(Augmented Lagrange Method)

    增强拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格 ...

  2. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  3. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  4. 增广拉格朗日乘子法(Augmented Lagrange Method)

    转载自:增广拉格朗日乘子法(Augmented Lagrange Method) 增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t ...

  5. Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  6. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  7. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...

  8. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  9. 拉格朗日乘子法(Lagrange Multiplier)和KKT条件

    拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其 ...

随机推荐

  1. JavaScript各种继承方式(三):组合继承(combination inheritance)

    一 原理 组合继承仅仅是同时使用了原型链继承和构造函数继承. 具体做法是,将父类的实例作为子类的构造函数的原型对象,并在子类的构造函数中调用父类的构造函数. function Fruit(name){ ...

  2. vue 父组件使用子组件中的data或methods

    1.调用子组件的时候 定义一个ref 2.在父组件里面通过 this.$refs.verify.属性 this.$refs.verify.方法

  3. 项目总结15:JavaScript模拟表单提交(实现window.location.href-POST提交数据效果)

    JavaScript模拟表单提交(实现window.location.href-POST提交数据效果) 前沿 1-在具体项目开发中,用window.location.href方法下载文件,因windo ...

  4. python脚本netifaces模块的调用

    # vim get_ip.py # -*- coding: utf- -*- #complete local network card IP #need install netifaces modem ...

  5. log4j日志配置(按天/按日)

    项目中尽管对log4j有基本的配置,例如按天生成日志文件以作区分,但如果系统日志文件过大,则就需要考虑以更小的单位切分或者其他切分方式.下面就总结一下log4j常用的配置参数以及切分日志的不同方式. ...

  6. CentOS 6、7 安装 Golang

    方法一:使用二进制文件安装 (推荐) 1.下载二进制文件: wget https://storage.googleapis.com/golang/go1.7.3.linux-amd64.tar.gz ...

  7. cell设置背景颜色为啥不起作用

    利用poi设置背景颜色时,应如下配置, CellStyle cell=workbook.createCellStyle(); cell.setFillForegroundColor(IndexedCo ...

  8. openCV基础知识

    openCV主体分为5个模块: CV图像处理函数和计算机视觉算法: ML机器学习库,包含许多聚类和数据分析函数: HighGUI图像和视频的输入输出: [分成三部分:硬件部分--摄像机;文件部分--载 ...

  9. ajax添加header信息

    $.ajax({url:"xxx",async:true,dataType:"json",contentType:"application/json& ...

  10. 关于PHP程序员技术职业生涯规划 2017年3月5日韩 天峰

    看到很多PHP程序员职业规划的文章,都是直接上来就提Linux.PHP.MySQL.Nginx.Redis.Memcache.jQuery这些,然后就直接上手搭环境.做项目,中级就是学习各种PHP框架 ...