Lagrange 乘子法求最优解
clc
clear
syms x y z r1 r2 w
f=x^+y^+z^+w^;
g1=*x-y+z-w-;
g2=x+y-z+w-;
h=f-r1*g1 -r2*g2; hx=diff(h,x);
hy=diff(h,y);
hz=diff(h,z);
hw=diff(h,w);
hr1=diff(h,r1);
hr2=diff(h,r2); r=solve([hx==,hy==,hz==,hw==,hr1==,hr2==],[x,y,z,w,r1,r2]); arr_x=double(r.x)
arr_y=double(r.y)
arr_z=double(r.z)
arr_w=double(r.w) arr_fv=[];
for i= : length(arr_x)
xv=arr_x(i);
yv=arr_y(i);
zv=arr_z(i);
wv=arr_w(i);
fv=subs(f,[x,y,z,w],[xv,yv,zv,wv]);
arr_fv(i)= double(fv);
g1v=subs(g1,[x,y,z,w],[xv,yv,zv,wv])
g2v=subs(g2,[x,y,z,w],[xv,yv,zv,wv])
end
arr_fv
disp('after sort:')
sort(arr_fv)

Lagrange 乘子法求最优解的更多相关文章
- 增强拉格朗日乘子法(Augmented Lagrange Method)
增强拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格 ...
- 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
[整理] 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...
- 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...
- 增广拉格朗日乘子法(Augmented Lagrange Method)
转载自:增广拉格朗日乘子法(Augmented Lagrange Method) 增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t ...
- Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...
- 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...
- 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...
- 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...
- 拉格朗日乘子法(Lagrange Multiplier)和KKT条件
拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其 ...
随机推荐
- JavaScript各种继承方式(五):寄生式继承(parasitic)
一 原理 与原型式继承完全相同,只是对父类的实例(也当作子类的实例使用)进行了增强. function create(obj){ let mango = Object.create(obj); man ...
- 关于nodejs中的async/await
作用: 将异步转为同步,其实有点语法糖,promise能实现的改为比较同步的方式表现. 用法: 两个关键字: async:放在函数声明前,用于表示这个函数含有异步过程,且此函数必定返回promise对 ...
- HUABASE :基于列存储的关系型数据库系统
摘要 HUABASE 是基于列存储的关系型数据库系统.列存储技术的特点是数据查询效率高,读磁盘少,存储空间少,是构建数据仓库的理想架构. HUABASE 实现了多种数据压缩机制.查询优化和稀疏索引 ...
- Compile、Make和Build的区别
针对Java的开发工具,一般都有Compile.Make和Build三个菜单项,完成的功能的都差不多,但是又有区别. 编译,是将源代码转换为可执行代码的过程.编译需要指定源文件和编译输出的文件路径 ...
- sudo和su的区别
su 命令 su su命令的主要作用是让你可以在已登录的会话中切换到另外一个用户.换句话说,这个工具可以让你在不登出当前用户的情况下登录为另外一个用户. su命令经常被用于切换到超级用户或 root ...
- go语言处理文件上传和多个文件上传
uploadOne.html代码如下: <!doctype html> <html lang="en"> <head> <meta cha ...
- 22.Mysql磁盘I/O
22.磁盘I/O问题磁盘IO是数据库性能瓶颈,一般优化是通过减少或延缓磁盘读写来减轻磁盘IO的压力及其对性能的影响.增强磁盘读写性能和吞吐量也是重要的优化手段. 22.1 使用磁盘阵列 RAID(Re ...
- js倒计时跳转页面实现
- json与字符串转换
一.json转为字符串 JSON.stringify(...) 二.字符串转为json JSON.parse(...)
- L1-033 出生年(15)(STL-set代码)
L1-033 出生年(15 分) 以上是新浪微博中一奇葩贴:"我出生于1988年,直到25岁才遇到4个数字都不相同的年份."也就是说,直到2013年才达到"4个数字都不相 ...