二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有前序、中序以及后序三种遍历方法。因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁。而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现。在三种遍历中,前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点。

一.前序遍历

前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问。

1.递归实现

void preOrder1(BinTree *root)     //递归前序遍历 
{
if(root!=NULL)
{
cout<<root->data<<"";
preOrder1(root->lchild);
preOrder1(root->rchild);
}
}

2.非递归实现

根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:

对于任一结点P:

1)访问结点P,并将结点P入栈;

2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;

3)直到P为NULL并且栈为空,则遍历结束。

void preOrder2(BinTree *root)     //非递归前序遍历 
{
stack<BinTree*> s;
BinTree *p=root;
while(p!=NULL||!s.empty())
{
while(p!=NULL)
{
cout<<p->data<<"";
s.push(p);
p=p->lchild;
}
if(!s.empty())
{
p=s.top();
s.pop();
p=p->rchild;
}
}
}

二.中序遍历

中序遍历按照“左孩子-根结点-右孩子”的顺序进行访问。

1.递归实现

void inOrder1(BinTree *root)      //递归中序遍历
{
if(root!=NULL)
{
inOrder1(root->lchild);
cout<<root->data<<"";
inOrder1(root->rchild);
}
}

2.非递归实现

根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:

对于任一结点P,

1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;

2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;

3)直到P为NULL并且栈为空则遍历结束

void inOrder2(BinTree *root)      //非递归中序遍历
{
stack<BinTree*> s;
BinTree *p=root;
while(p!=NULL||!s.empty())
{
while(p!=NULL)
{
s.push(p);
p=p->lchild;
}
if(!s.empty())
{
p=s.top();
cout<<p->data<<"";
s.pop();
p=p->rchild;
}
}
}

三.后序遍历

后序遍历按照“左孩子-右孩子-根结点”的顺序进行访问。

1.递归实现

void postOrder1(BinTree *root)    //递归后序遍历
{
if(root!=NULL)
{
postOrder1(root->lchild);
postOrder1(root->rchild);
cout<<root->data<<"";
}
}

2.非递归实现

后序遍历的非递归实现是三种遍历方式中最难的一种。因为在后序遍历中,要保证左孩子和右孩子都已被访问并且左孩子在右孩子前访问才能访问根结点,这就为流程的控制带来了难题。下面介绍两种思路。

第一种思路:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还为被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。

void postOrder2(BinTree *root)    //非递归后序遍历
{
stack<BTNode*> s;
BinTree *p=root;
BTNode *temp;
while(p!=NULL||!s.empty())
{
while(p!=NULL) //沿左子树一直往下搜索,直至出现没有左子树的结点
{
BTNode *btn=(BTNode *)malloc(sizeof(BTNode));
btn->btnode=p;
btn->isFirst=true;
s.push(btn);
p=p->lchild;
}
if(!s.empty())
{
temp=s.top();
s.pop();
if(temp->isFirst==true) //表示是第一次出现在栈顶
{
temp->isFirst=false;
s.push(temp);
p=temp->btnode->rchild;
}
else //第二次出现在栈顶
{
cout<<temp->btnode->data<<"";
p=NULL;
}
}
}
}

第二种思路:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。

void postOrder3(BinTree *root)     //非递归后序遍历
{
stack<BinTree*> s;
BinTree *cur; //当前结点
BinTree *pre=NULL; //前一次访问的结点
s.push(root);
while(!s.empty())
{
cur=s.top();
if((cur->lchild==NULL&&cur->rchild==NULL)||
(pre!=NULL&&(pre==cur->lchild||pre==cur->rchild)))
{
cout<<cur->data<<""; //如果当前结点没有孩子结点或者孩子节点都已被访问过
s.pop();
pre=cur;
}
else
{
if(cur->rchild!=NULL)
s.push(cur->rchild);
if(cur->lchild!=NULL)
s.push(cur->lchild);
}
}
}

四.整个程序完整的代码

/*二叉树的遍历* 2011.8.25*/ 

#include <iostream>
#include<string.h>
#include<stack>
using namespace std; typedef struct node
{
char data;
struct node *lchild,*rchild;
}BinTree; typedef struct node1
{
BinTree *btnode;
bool isFirst;
}BTNode; void creatBinTree(char *s,BinTree *&root) //创建二叉树,s为形如A(B,C(D,E))形式的字符串
{
int i;
bool isRight=false;
stack<BinTree*> s1; //存放结点
stack<char> s2; //存放分隔符
BinTree *p,*temp;
root->data=s[0];
root->lchild=NULL;
root->rchild=NULL;
s1.push(root);
i=1;
while(i<strlen(s))
{
if(s[i]=='(')
{
s2.push(s[i]);
isRight=false;
}
else if(s[i]==',')
{
isRight=true;
}
else if(s[i]==')')
{
s1.pop();
s2.pop();
}
else if(isalpha(s[i]))
{
p=(BinTree *)malloc(sizeof(BinTree));
p->data=s[i];
p->lchild=NULL;
p->rchild=NULL;
temp=s1.top();
if(isRight==true)
{
temp->rchild=p;
cout<<temp->data<<"的右孩子是"<<s[i]<<endl;
}
else
{
temp->lchild=p;
cout<<temp->data<<"的左孩子是"<<s[i]<<endl;
}
if(s[i+1]=='(')
s1.push(p);
}
i++;
}
} void display(BinTree *root) //显示树形结构
{
if(root!=NULL)
{
cout<<root->data;
if(root->lchild!=NULL)
{
cout<<'(';
display(root->lchild);
}
if(root->rchild!=NULL)
{
cout<<',';
display(root->rchild);
cout<<')';
}
}
} void preOrder1(BinTree *root) //递归前序遍历
{
if(root!=NULL)
{
cout<<root->data<<"";
preOrder1(root->lchild);
preOrder1(root->rchild);
}
} void inOrder1(BinTree *root) //递归中序遍历
{
if(root!=NULL)
{
inOrder1(root->lchild);
cout<<root->data<<"";
inOrder1(root->rchild);
}
} void postOrder1(BinTree *root) //递归后序遍历
{
if(root!=NULL)
{
postOrder1(root->lchild);
postOrder1(root->rchild);
cout<<root->data<<"";
}
} void preOrder2(BinTree *root) //非递归前序遍历
{
stack<BinTree*> s;
BinTree *p=root;
while(p!=NULL||!s.empty())
{
while(p!=NULL)
{
cout<<p->data<<"";
s.push(p);
p=p->lchild;
}
if(!s.empty())
{
p=s.top();
s.pop();
p=p->rchild;
}
}
} void inOrder2(BinTree *root) //非递归中序遍历
{
stack<BinTree*> s;
BinTree *p=root;
while(p!=NULL||!s.empty())
{
while(p!=NULL)
{
s.push(p);
p=p->lchild;
}
if(!s.empty())
{
p=s.top();
cout<<p->data<<"";
s.pop();
p=p->rchild;
}
}
} void postOrder2(BinTree *root) //非递归后序遍历
{
stack<BTNode*> s;
BinTree *p=root;
BTNode *temp;
while(p!=NULL||!s.empty())
{
while(p!=NULL) //沿左子树一直往下搜索,直至出现没有左子树的结点
{
BTNode *btn=(BTNode *)malloc(sizeof(BTNode));
btn->btnode=p;
btn->isFirst=true;
s.push(btn);
p=p->lchild;
}
if(!s.empty())
{
temp=s.top();
s.pop();
if(temp->isFirst==true) //表示是第一次出现在栈顶
{
temp->isFirst=false;
s.push(temp);
p=temp->btnode->rchild;
}
else //第二次出现在栈顶
{
cout<<temp->btnode->data<<"";
p=NULL;
}
}
}
} void postOrder3(BinTree *root) //非递归后序遍历
{
stack<BinTree*> s;
BinTree *cur; //当前结点
BinTree *pre=NULL; //前一次访问的结点
s.push(root);
while(!s.empty())
{
cur=s.top();
if((cur->lchild==NULL&&cur->rchild==NULL)||
(pre!=NULL&&(pre==cur->lchild||pre==cur->rchild)))
{
cout<<cur->data<<""; //如果当前结点没有孩子结点或者孩子节点都已被访问过
s.pop();
pre=cur;
}
else
{
if(cur->rchild!=NULL)
s.push(cur->rchild);
if(cur->lchild!=NULL)
s.push(cur->lchild);
}
}
} int main(int argc, char *argv[])
{
char s[100];
while(scanf("%s",s)==1)
{
BinTree *root=(BinTree *)malloc(sizeof(BinTree));
creatBinTree(s,root);
display(root);
cout<<endl;
preOrder2(root);
cout<<endl;
inOrder2(root);
cout<<endl;
postOrder2(root);
cout<<endl;
postOrder3(root);
cout<<endl;
}
return 0;
}

二叉树的递归,非递归遍历(C++)的更多相关文章

  1. 【数据结构】——搜索二叉树的插入,查找和删除(递归&非递归)

    一.搜索二叉树的插入,查找,删除 简单说说搜索二叉树概念: 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右 ...

  2. Reverse Linked List 递归非递归实现

    单链表反转--递归非递归实现 Java接口: ListNode reverseList(ListNode head) 非递归的实现 有2种,参考 头结点插入法 就地反转 递归的实现 1) Divide ...

  3. 二叉树的先序、中序以及后序遍历(递归 && 非递归)

    树节点定义: class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } 递归建立二 ...

  4. 二叉树——遍历篇(递归/非递归,C++)

    二叉树--遍历篇 二叉树很多算法题都与其遍历相关,笔者经过大量学习.思考,整理总结写下二叉树的遍历篇,涵盖递归和非递归实现. 1.二叉树数据结构及访问函数 #include <stdio.h&g ...

  5. java创建二叉树并实现非递归中序遍历二叉树

    java创建二叉树并递归遍历二叉树前面已有讲解:http://www.cnblogs.com/lixiaolun/p/4658659.html. 在此基础上添加了非递归中序遍历二叉树: 二叉树类的代码 ...

  6. 递归/非递归----python深度遍历二叉树(前序遍历,中序遍历,后序遍历)

    递归代码:递归实现很简单 '二叉树结点类' class TreeNode: def __init__(self, x): self.val = x self.left = None self.righ ...

  7. Java实现二叉树的创建、递归/非递归遍历

    近期复习数据结构中的二叉树的相关问题,在这里整理一下 这里包含: 1.二叉树的先序创建 2.二叉树的递归先序遍历 3.二叉树的非递归先序遍历 4.二叉树的递归中序遍历 5.二叉树的非递归中序遍历 6. ...

  8. C++二叉树前中后序遍历(递归&非递归)统一代码格式

    统一下二叉树的代码格式,递归和非递归都统一格式,方便记忆管理. 三种递归格式: 前序遍历: void PreOrder(TreeNode* root, vector<int>&pa ...

  9. 二叉树总结—建树和4种遍历方式(递归&&非递归)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u013497151/article/details/27967155 今天总结一下二叉树.要考离散了 ...

随机推荐

  1. WP8整合Bing应用,生活有求Bing

    在Windows 8中,Bing应用一直随系统而存在,提供多样化的资讯.它们是我的“御用”App,因为可以根据我的使用习惯对应用进行定制. 在Windows Phone 8系统第三次官方更新之后, B ...

  2. 3D打印软件工具

    切片与工艺规划(打印)软件: 3D打印中另外两个重要的步骤(切片和打印)中可以用到的一些开源,免费的软件和应用 Cura        开源, 免费                    Python ...

  3. hdu 2688

    这题,因为要统计之前有多少个数比当前的数小,所以我用的树状数组 基本代码就是这样,还是比较好想的,只不过我没想出来罢了 #include <iostream> #include <c ...

  4. struts2马士兵笔记

    Struts2 学习笔记 目录 01 Struts2-Action 一.         Struts作用: 二.         搭建Struts2的运行环境: 三.         Namespa ...

  5. 学习JavaScript计划

    1.首先根据视频做小例子 2.每天记录到博客 3.这次坚持把这个学完,并完成接口测试界面的编写

  6. CentOS下下载软件,不安装的方法

    今天来说下在CentOS下下载软件,不安装的方法: 方法一:通过yum自带一个工具:yumdownloader[root@web1 ~]#  rpm -qa |grep yum-utils[root@ ...

  7. C# .NET 获取枚举值的自定义属性

    一.定义一个类 using System; using System.Collections.Generic; using System.Linq; using System.Text; using ...

  8. WinRAR试用过期决绝方法

    一.WinRAR 试用过期决绝方法 直接去WINRAR官方下个版本装上然后这样 复制以下内容(红色)到记事本,保存为rarreg.key文件(即文件名是rarreg,扩展名是key),把这文件拷贝到W ...

  9. 探究Entity Framework如何在多个仓储层实例之间工作单元的实现及原理(2018-05-31修改部分严重错误代码)

    前言 1.本文的前提条件:EF上下文是线程唯一,EF版本6.1.3. 2.网上已有相关API的详细介绍,本文更多的是作为我自己的个人学习研究记录. 3.2018-05-31修改DbSession.cs ...

  10. UWP 响应键盘组合快捷键

    方法1:响应Ctrl+?快捷键 首先在load事件或者keydown事件内注册事件 public MainPage() { this.InitializeComponent(); // Registe ...