hdu 4612 边双联通 ***
题意:有N 个点,M条边,加一条边,求割边最少。(有重边)
链接:点我
先求双连通分量,缩点形成一个生成树,然后求这个的直径,割边-直径即是答案
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
using namespace std; const int MAXN = ;//点数
const int MAXM = ;//边数,因为是无向图,所以这个值要*2 struct Edge
{
int to,next;
bool cut;//是否是桥标记
bool cong;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~block
int Index,top;
int block;//边双连通块数
bool Instack[MAXN];
int bridge;//桥的数目 void addedge(int u,int v,bool pp)
{
edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut=false;
edge[tot].cong = pp;
head[u] = tot++;
} void Tarjan(int u,int pre,bool ff)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if(v == pre && (!ff))continue; //有重边
if( !DFN[v] )
{
Tarjan(v,u,edge[i].cong);
if( Low[u] > Low[v] )Low[u] = Low[v];
if(Low[v] > DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^].cut = true;
}
}
else if( Instack[v] && Low[u] > DFN[v] )
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
block++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
}
while( v!=u );
}
}
void init()
{
tot = ;
memset(head,-,sizeof(head));
} int du[MAXN];//缩点后形成树,每个点的度数
vector<int>vec[MAXN];
int dep[MAXN];
void dfs(int u)
{
for(int i = ;i < vec[u].size();i++)
{
int v = vec[u][i];
if(dep[v]!=-)continue;
dep[v]=dep[u]+;
dfs(v);
}
}
void solve(int n)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
Index = top = block = ;
Tarjan(,,false);
for(int i = ;i <= block;i++)
vec[i].clear();
for(int i = ;i <= n;i++)
for(int j = head[i];j != -;j = edge[j].next)
if(edge[j].cut)
{
vec[Belong[i]].push_back(Belong[edge[j].to]);
}
memset(dep,-,sizeof(dep));
dep[]=;
dfs();
int k = ;
for(int i = ;i <= block;i++)
if(dep[i]>dep[k])
k = i;
memset(dep,-,sizeof(dep));
dep[k]=;
dfs(k);
int ans = ;
for(int i = ;i <= block;i++)
ans = max(ans,dep[i]);
printf("%d\n",block--ans);
}
struct NN
{
int u,v;
}node[MAXM];
bool cmp(NN a,NN b)
{
if(a.u != b.u)return a.u<b.u;
else return a.v<b.v;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
int u,v;
while(scanf("%d%d",&n,&m)==)
{
if(n== && m==)break;
init();
for(int i = ;i < m;i++)
{
scanf("%d%d",&u,&v);
if(u==v)continue;
if(u>v)swap(u,v);
node[i].u = u;
node[i].v = v;
}
sort(node,node+m,cmp);
for(int i = ;i < m;i++)
{
if(i == || (node[i].u!=node[i-].u || node[i].v != node[i-].v))
{
if(i < m- && (node[i].u==node[i+].u && node[i].v == node[i+].v)) //标记了是否出现重边
{
addedge(node[i].u,node[i].v,true);
addedge(node[i].v,node[i].u,true);
}
else
{
addedge(node[i].u,node[i].v,false);
addedge(node[i].v,node[i].u,false);
}
}
}
solve(n);
}
return ;
}
2015/7/3
hdu 4612 边双联通 ***的更多相关文章
- hdu 4612 (双联通+树形DP)
加一条边后最少还有多少个桥,先Tarjan双联通缩点, 然后建树,求出树的直径,在直径起点终点加一条边去的桥最多, #pragma comment(linker, "/STACK:10240 ...
- hdu 4612 双联通缩点+树形dp
#pragma comment(linker,"/STACK:102400000,102400000")//总是爆栈加上这个就么么哒了 #include<stdio.h> ...
- HDU 4612——Warm up——————【边双连通分量、树的直径】
Warm up Time Limit:5000MS Memory Limit:65535KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- HDU 4612 Warm up (边双连通分量+DP最长链)
[题意]给定一个无向图,问在允许加一条边的情况下,最少的桥的个数 [思路]对图做一遍Tarjan找出桥,把双连通分量缩成一个点,这样原图就成了一棵树,树的每条边都是桥.然后在树中求最长链,这样在两端点 ...
- hdu 3849 (双联通求桥)
一道简单的双联通求桥的题目,,数据时字符串,,map用的不熟练啊,,,,,,,,,,,,, #include <iostream> #include <cstring> #in ...
- hdu 2460 poj 3694 (双联通+LCA)
在给出的两个点上加一条边,求剩下桥的数量,,不会LCA在线,就用了最普通的,先Tarjan双联通缩点,然后将缩完的图建成一棵树,树的所有边就是桥了,如果在任意两点间加一条边的话,那么从两点到最近公共祖 ...
- hdu 4738 (双联通求桥)
2013 ACM/ICPC Asia Regional Hangzhou Online 题目大意:有n个岛,曹操在一些岛之间建了一些桥,每个桥上有一些士兵把守,周瑜只有一个炸弹只能炸掉一个桥,炸弹需要 ...
- HDU 6041 I Curse Myself(点双联通加集合合并求前K大) 2017多校第一场
题意: 给出一个仙人掌图,然后求他的前K小生成树. 思路: 先给出官方题解 由于图是一个仙人掌,所以显然对于图上的每一个环都需要从环上取出一条边删掉.所以问题就变为有 M 个集合,每个集合里面都有一堆 ...
- hdu 2242双联通分量+树形dp
/*先求出双联通缩点,然后进行树形dp*/ #include<stdio.h> #include<string.h> #include<math.h> #defin ...
随机推荐
- 分布式监控工具Ganglia 介绍 与 集群部署.
如果你目的很明确就是冲着标题来的,不爱看我唠叨,请直接进入第二个分割线之后的内容. 其实之前就是有做Swift监控平台的打算的,但是因为没什么硬性需求么,也不要紧的,就一直搁置了.最近实验室来了个大二 ...
- 20155211 2016-2017-2 《Java程序设计》第六周学习总结
20155211 2016-2017-2 <Java程序设计>第六周学习总结 教材学习内容总结 第十章 输入/输出 一.InputStream与OutputStream (一)串流设计的概 ...
- Servlet笔记8--乱码解决方案
乱码解决方案: 代码详解: package com.bjpowernode.javaweb.servlet; import java.io.IOException; import javax.serv ...
- linux命令中which、whereis、locate有什么区别?
1.find find是最常用和最强大的查找命令.它能做到实时查找,精确查找,但速度慢. find的使用格式如下: #find [指定目录] [指定条件] [指定动作] 指定目录:是指所要搜索的目录和 ...
- imperva—waf 敏感字段显现
imperva WAF中看到的日志内容信息有些都是敏感的 比如登录登出的信息 如何调整敏感信息的现实方式,并可以自定义敏感字段? 这里添加字段就可以了 这样就将******转变为明文了
- linux中serial driver理解【转】
转自:http://blog.csdn.net/laoliu_lcl/article/details/39967225 英文文档地址:myandroid/kernel_imx/Documentatio ...
- pandas 合并数据
1. pandas 的merge,join 就不说了. 2. 神奇的: concat append 参考: PANDAS 数据合并与重塑(concat篇) 3.
- [转]mysql性能优化-慢查询分析、优化索引和配置
一. 优化概述 MySQL数据库是常见的两个瓶颈是CPU和I/O的瓶颈,CPU在饱和的时候一般发生在数据装入内存或从磁盘上读取数据时候.磁盘I/O瓶颈发生在装入数据远大于内存容量的时候,如果应用分布在 ...
- laravel队列,事件简单使用方法
A.队列的使用 1.队列配置文件存储在 config/queue.php 根据自己的情况进行配置 2..env文件 QUEUE_DRIVER=database(根据个人情况配置,redis等) 3.创 ...
- linux 命令点滴记录(centos)
2016年5月26日:创建root用户 [lx@localhost ~]$ su root Password: [root@localhost lx]# 帐号:root ;密码:输入的Password ...