例题  poj 2417bsgs  http://poj.org/problem?id=2417

这是一道bsgs题目,用bsgs算法,又称大小步(baby step giant step)算法,或者拔(b)山(s)盖(g)世(s)算法,或者北(b)上(s)广(g)深(s)算法。。。

题目大意就是

给定a,b,p,求最小的非负整数x,满足  ax ≡ b(mod p)

先令 x = i*m-j,其中 m=ceil(sqrt(p)),ceil是向上取整。

这样原式就变为     ai*m-j = b (mod p),

移项就变成了        ai*m = b*aj (mod p)

枚举j (范围0-m) ,将 b*aj  存入hash表。

枚举i (范围1-m) ,从hash表中寻找第一个满足ai*m = b*aj  (mod p)。

此时   x = i*m-j  就是所要求的。

那么为什么只计算到 m=ceil(sqrt(q))  就可以确定答案呢?

因为 x = i*m-j , 所以x 的最大值不会超过p

a(k mod p-1) = ak (mod p)  证明这个公式,(需要用到费马小定理)

k mod p-1 就是 k-m(p-1) ,原式就变成了 ak-m(p-1) ≡ ak (mod p)

再变一步  a/ am(p-1) ≡ ak (mod p)

这时让 am(p-1) ≡ 1 (mod p) 就行了。

由费马小定理知: 当p为质数且 (a,p) = 1 时 ap-1 ≡ 1 (mod p)

所以推出 p 为质数 且 (a,p)=1 这个条件, 所以 a(k mod p-1) ≡ a (mod p)

所以:如果枚举 x 的话枚举到 p 即可。

所以使 im−j<=p , 即 m=⌈√p⌉ , i,j 最大值也为m。

这是代码,结合上面的看

 #include<cstdio>
#include<algorithm>
#include<map>
#include<cmath> using namespace std;
typedef long long ll; map<ll,int>mp;
ll p,a,b;
ll n,m,now,ans,t;
bool flag; ll fast_pow(ll x)
{
ll sum = ;
ll aa = a;
while (x>)
{
if (x&)
sum = (sum*aa)%p;
x = x>>;
aa = (aa*aa)%p;
}
return sum;
}
int main()
{
while(scanf("%lld%lld%lld",&p,&a,&b)!=EOF)
{
if(a%p==)
{
printf("no solution\n");
continue;
}
mp.clear();
m = ceil(sqrt(p));
flag = false ;
now = b%p; //b*a^j 当j==0时
mp[now] = ;
for(int i=;i<=m;++i)
{
now = (now*a)%p;
mp[now] = i;
}
t = fast_pow(m);
now = ;
for(int i=;i<=m;++i) //枚举 (a^m)^i
{
now = (now*t)%p;
if(mp[now])
{
flag = true;
ans = i*m-mp[now];
printf("%lld\n",(ans%p+p)%p); //printf("%lld\n",(ans%p+p)%p);
break;
}
}
if(!flag) printf("no solution\n");
}
return ;
}

bsgs

bsgs算法详解的更多相关文章

  1. BSGS(Baby Steps,Giant Steps)算法详解

    BSGS(Baby Steps,Giant Steps)算法详解 简介: 此算法用于求解 Ax≡B(mod C): 由费马小定理可知: x可以在O(C)的时间内求解:  在x=c之后又会循环: 而BS ...

  2. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  3. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  4. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  5. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  6. 【转】AC算法详解

    原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...

  7. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  8. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

  9. Tarjan算法详解

    Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...

随机推荐

  1. bzoj千题计划292:bzoj2244: [SDOI2011]拦截导弹

    http://www.lydsy.com/JudgeOnline/problem.php?id=2244 每枚导弹成功拦截的概率 = 包含它的最长上升子序列个数/最长上升子序列总个数 pre_len ...

  2. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

  3. 原生JS 基础总结

    0. 好习惯 分号 ; 花括号 {}, var 弄清楚 null , undefined 区别 , isNaN, === 与 == 区别 1. prompt , confirm , alert 不同框 ...

  4. Java Message Service学习(一)

    一,背景 近期需要用到ActiveMQ接收Oozie执行作业之后的返回结果.Oozie作为消息的生产者,将消息发送给ActiveMQ,然后Client可以异步去ActiveMQ取消息. ActiveM ...

  5. 正则tips

    在啃Sizzle源码,被几个正则表达式给难住了,写了一下正则demo,记录一下 1,按照定义[]和(?:)里的内容不计入捕获组的数目 2,捕获组的计数顺序是,从大到小,同级从左到右 例如 var re ...

  6. [QuickRoR]Ruby on Rails开发环境安装

    1.Setup Ruby on Rails2.Test Web App3.Create the First Web App 1.Setup Ruby on Rails1) Download rubyi ...

  7. [整]Android开发优化-布局优化

    优化布局层次结构 一个普遍的误解就是,使用基本的布局结构会产生高效的布局性能.然而每一个添加到应用的控件和布局,都需要初始化,布局位置和绘制.比如,使用一个嵌套的LinearLayout会导致过深的布 ...

  8. Longest Words

    Given a dictionary, find all of the longest words in the dictionary. Example Given { "dog" ...

  9. linux下简单的备份的脚本 2 【转】

    转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=26807463&id=4577034 之前写过linux下简单的 ...

  10. asp.net防SQL/JS注入攻击:过滤标记

    /// <summary>/// 过滤标记/// </summary>/// <param name="NoHTML">包括HTML,脚本,数据 ...