poj 2429 GCD & LCM Inverse 【java】+【数学】
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 9928 | Accepted: 1843 |
Description
Input
Output
Sample Input
3 60
Sample Output
12 15
题意:给出你最大公约数和最小公倍数,让你求出原来的两个数a,b。特别的假设有多组的话,输出和最小的哪一组。
分析:由GCD和LCM之间的关系可得a*b/GCD= LCM; 没有特别的方法仅仅好枚举,可是我们能够得出a*b = LCM/GCD。我们要找的是最后的和最小的,所以从sqrt(b/=a)開始到1枚举就好了。
注:假设用c/c++会超时的。最后经学长指导改用java就过了。。。
又学了一招。
代码:
import java.util.Scanner;
import java.math.*; public class Main{
public static void main(String[] args){
Scanner cin = new Scanner(System.in);
long a, b, x, y;
while(cin.hasNext()){
a = cin.nextLong();
b = cin.nextLong();
x = y = 0;
b /= a;
for(long i = (long)Math.sqrt(b); i > 0; i --){
if(b%i == 0&&gcd(i, b/i) == 1){
x = i*a; y = b/i*a; break;
}
}
System.out.println(x+" "+y);
}
}
public static long gcd(long a, long b){
if(a<b){
long t =a; a = b; b = t;
}
if(b == 0) return a;
else return gcd(b, a%b);
}
}
poj 2429 GCD & LCM Inverse 【java】+【数学】的更多相关文章
- [POJ 2429] GCD & LCM Inverse
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10621 Accepted: ...
- POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd lcm/gcd=a/gcd*b/gcd 可知a/gc ...
- 1266: gcd和lcm(Java)
WUSTOJ 1266: gcd和lcm 参考 1naive1的博客 Description 已知a,b的最大公约数为x,也即gcd(a,b)=x; a,b的最小公倍数为y,也即lcm(a,b)= ...
- POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)
[题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...
- POJ 2429 GCD & LCM Inverse(Miller-Rabbin素性测试,Pollard rho质因子分解)
x = lcm/gcd,假设答案为a,b,那么a*b = x且gcd(a,b) = 1,因为均值不等式所以当a越接近sqrt(x),a+b越小. x的范围是int64的,所以要用Pollard_rho ...
- POJ:2429-GCD & LCM Inverse(素数判断神题)(Millar-Rabin素性判断和Pollard-rho因子分解)
原题链接:http://poj.org/problem?id=2429 GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K To ...
- POJ2429 GCD & LCM Inverse pollard_rho大整数分解
Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and t ...
- hdu 4497 GCD and LCM 数学
GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...
- POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)
题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...
随机推荐
- 搭建RabbitMQ集群(Docker)
前一篇搭建RabbitMQ集群(通用)只是把笔记直接移动过来了,因为我的机器硬盘已经满了,实在是开不了那么虚拟机. 还好,我的Linux中安装了Docker,这篇文章就简单介绍一下Docker中搭建R ...
- RabbitMq Queue一些方法及参数
方法: 1.QueueDeclare 声明队列 public static QueueDeclareOk QueueDeclare(String queue, Boolean durable, Boo ...
- fuzz for test of the Net::HTTP::GET
use Net::HTTP::GET; % %0e%0f ' *%26 @.jpg>; my $count = 0; for @chars X @chars X @chars X @chars ...
- 转:Citrix虚拟化--转自CSDN
http://blog.csdn.net/kkfloat/article/category/1430751/3
- 关于iTerm2中颜色配置及快捷键使用技巧(亲测)
https://github.com/mbadolato/iTerm2-Color-Schemes http://chriskempson.com/projects/base16 (同事用的) 按照g ...
- 移动端HTML5开发 选择方案
如今出现了大量的CSS前端框架,但真正优秀的框架只有少数几个. 本文将会比较其中五个最佳的框架.每个框架都有自己的优点和缺点,以及具体的应用领域,你可以根据自己的具体项目需求进行选择.此外,许多选项都 ...
- python3 pandas DataFrame常见用法
df = pandas.read_clipboard() df 获取索引和值 df.index df.values DataFrame的values属性将数据以二维ndarray形式返回,dtype类 ...
- JVM指令详解(上)
指令码 助记符 说明 0x00 nop 什么都不做 0x01 ...
- ExpressMapper- The New .NET Mapper!
推荐,据测试比手工映射的效率还高. https://www.codeproject.com/Tips/1009198/Expressmapper-The-New-NET-Mapper
- SpringMVC JSON数据交互
本节内容: @RequestBody @ResponseBody 请求json,响应json实现 前端可以有很多语言来写,但是基本上后台都是java开发的,除了c++(开发周期长),PHP和#Net( ...