Going Home
题意:n个人,进n个房子,每走一格花费1美元,每个房子只能进一人,求所有人进房子的最小花费。 就是推箱子 箱子最短行走距离
这题无法用bfs做 !
用最小花费最大流
通过EK,Dinic,ISAP算法可以得到网络流图中的最大流,一个网络流图中最大流的流量max_flow是唯一的,但是达到最大流量max_flow时每条边上的流量分配f是不唯一的。
如果给网络流图中的每条边都设置一个费用cost,表示单位流量流经该边时会导致花费cost。那么在这些流量均为max_flow的流量分配f中,存在一个流量总花费最小的最大流方案。
即 min{sum(cost(i, j)*f(i,j) | (i, j)属于方案f中的边, f(i,j)为 边(i,j)上的流量, f为某一个最大流方案}。此即为最小费用最大流。
建图:
超级源点到所有人 每个人到每个房子均算出花费 所有房子到超级汇点 所有的边均为1 花费除了人到房子均为0
可当作最小花费最大流模板:
#include <cstdio>
#include <cstring>
#include <queue>
#include <cstdlib>
#include <algorithm>
#define MAXN 200+10
#define MAXM 80000+100
#define INF 0x3f3f3f3f
using namespace std;
struct Edge
{
int from, to, cap, flow, cost, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum;
int pre[MAXN], dist[MAXN];
bool vis[MAXN];
int N, M;
int cost, flow;
int sink, source;//超级源点 超级汇点
void init()
{
edgenum = ;
memset(head, -, sizeof(head));
}
void addEdge(int u, int v, int w, int c)
{
Edge E1 = {u, v, w, , c, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, , , -c, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
}
int dis(int x1, int y1, int x2, int y2)
{
return abs(x1 - x2) + abs(y1 - y2);
}
struct Node
{
int x, y;
};
Node m[], H[];//存储字符坐标 bool SPFA(int s, int t)//寻找花销最少的路径
{
queue<int> Q;
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
dist[s] = ;
vis[s] = true;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = false;
for(int i = head[u]; i != -; i = edge[i].next)
{
Edge E = edge[i];
if(dist[E.to] > dist[u] + E.cost && E.cap > E.flow)//可以松弛 且 没有满流
{
dist[E.to] = dist[u] + E.cost;
pre[E.to] = i;//记录前驱边 的编号
if(!vis[E.to])
{
vis[E.to] = true;
Q.push(E.to);
}
}
}
}
return pre[t] != -;//可达返回true
}
void MCMF(int s, int t)
{
flow = ;//总流量
cost = ;//总费用 while(SPFA(s, t))//每次寻找花销最小的路径
{
int Min = INF;
//通过反向弧 在源点到汇点的最少花费路径 找最小增广流
for(int i = pre[t]; i != -; i = pre[edge[i^].to])
{
Edge E = edge[i];
Min = min(Min, E.cap - E.flow);
}
//增广
for(int i = pre[t]; i != -; i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost * Min;//增广流的花销
}
flow += Min;//流量累加
}
}
int main()
{
int m_cnt;//m字符计数器
int H_cnt;//H字符计数器 while(scanf("%d%d", &N, &M), N||M)
{
init(); m_cnt = H_cnt = ;
char str[][];
for(int i = ; i < N; i++)
{
scanf("%s", str[i]);
for(int j = ; j < M; j++)
{
if(str[i][j] == 'm')
{
++m_cnt;
m[m_cnt].x = i;
m[m_cnt].y = j;
}
if(str[i][j] == 'H')
{
++H_cnt;
H[H_cnt].x = i;
H[H_cnt].y = j;
}
}
}
int k = m_cnt;//人数 或者 房子数
sink = ;
source = *k+;
for(int i = ; i <= k; i++)
{
addEdge(sink, i, , );
addEdge(i + k, source, , );
for(int j = ; j <= k; j++)
{
int d = dis(H[i].x, H[i].y, m[j].x, m[j].y);
addEdge(i, j + k, , d);
}
} MCMF(sink, source);
printf("%d\n", cost);
}
return ;
}
随机推荐
- 解决 winform 界面对不齐
最近做了一个winform的程序,本机上界面对得很齐,到一到客户的机器上就惨不忍睹,一番研究后搞定: 1. AutoScaleMode = None 2. BackgroundImageLayout ...
- Maven添加第三方库及部署配置
配置其实很简单,还是修改~/.m2/settings.xml文件,具体用文件说话,其他不解释. <?xml version="1.0" encoding="UTF- ...
- 学习4__STM32--中断
Cortex-M处理器的NVIC接收中断请求各种源 > 从图中可看出,NVIC是一个外设中断的管理器,简化core的工作,控制着整个芯片的中断功能 > NVIC负责给外设中断分配优先级,使 ...
- Mysql(四)正则表达式
一.正则表达式 1.使用like可以进行不确定的查询(模糊查询),然而,模糊 查询的功能有限,当需要进行更加复杂的模式匹配时,可以 使用正则表达式来完成. 2.正则表达式可以对指定的字符串与模式之间执 ...
- ubuntu ssh root登陆
原文:https://blog.csdn.net/wy_97/article/details/78294562 1.默认使用ubuntu用户登录,密码为服务器配置时设置的密码,可在重置密码中修改 2. ...
- docker mysql authentication_string client does not support authentication 连接问题
docker安装mysql后,本地navicat连接报错client does not support authentication 解决办法: 1. docker ps -a 查找到容器id 2. ...
- weblogic11G 修改密码
weblogic11的登录密码修改方法: 1. 登陆到weblogic后选中domain structure下的security Realms(如图一) (图一) 详情如图二: (图二) 2. 双 ...
- internal in C#
说白了 被 internal 修饰的东西只能在本程序集(当前项目)内被使用. 被 protected internal 修饰的属性/方法 可以在其他项目中,被派生类使用 例如有两个项目app1和app ...
- scrapy 简单防封
设置爬取间隔 setting.py from random import random DOWNLOAD_DELAY = random()* ps:此次的爬取间隔,在读取seeting文件确定,并非每 ...
- Web性能优化系列(2):剖析页面绘制时间
本文由 伯乐在线 - J.c 翻译,sunbiaobiao 校稿.未经许可,禁止转载!英文出处:www.deanhume.com.欢迎加入翻译小组. 最近,我参加了在伦敦举办的Facebook移动开发 ...