洛咕 P4491 [HAOI2018]染色
显然颜色数量不会超过\(lim=\min(m,n/S)\)
考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种
有\(m\)种颜色选\(i\)种,所以乘一个\(C_m^i\)
然后这n个位置分成\(i+1\)个部分:被钦定的\(i\)种颜色,每个有\(S\)个;剩下的\(m-i\)种颜色,一共\(n-iS\)个。先看作是可重的全排列数,那么方案就有\(\frac{n!}{(S!)^i(n-iS)!}\)种。前\(i\)各部分都是只有一种颜色,后面部分每个有\(m-i\)种取法,所以还有一个\((m-i)^{n-iS}\)
综上,\(f[i]=C_m^i\cdot \frac{n!}{(S!)^i(n-iS)!}\cdot(m-i)^{n-iS}\)
接下来就是答案,恰好出现了\(S\)次的颜色有正好\(i\)种的方案数\(ans[i]\)
用容斥,\(ans[i]=\sum_{j=i}^{lim}(-1)^{j-i}C_j^if[j]\)
那个组合数很麻烦,拆开
\(ans[i]=\sum_{j=i}^{lim}(-1)^{j-i}\frac{j!}{i!(j-i)!}f[j]\)
\(ans[i]\cdot i!=\sum_{j=i}^{lim}\frac{(-1)^{j-i}}{(j-i)!}f[j]\cdot j!\)
这就可以直接用NTT做了,如果不知道怎么做的可以先写zjoi2014 力
#include<bits/stdc++.h>
#define il inline
#define vd void
#define mod 1004535809
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
il int pow(int x,int y){
int ret=1;
while(y){
if(y&1)ret=1ll*ret*x%mod;
x=1ll*x*x%mod;y>>=1;
}
return ret;
}
#define inv(a) pow((a),mod-2)
const int G=3,iG=inv(G);
int fact[10000001],W[100010];
int A[262147],B[262147],rev[262147];
il int C(int n,int m){
if(n<m)return 0;
return 1ll*fact[n]*inv(1ll*fact[m]*fact[n-m]%mod)%mod;
}
il vd ntt(int*A,int n,int t){
for(int i=0;i<n;++i)if(rev[i]>i)std::swap(A[rev[i]],A[i]);
for(int o=1;o<n;o<<=1){
int W=pow(t?G:iG,(mod-1)/(o<<1));
for(int*p=A;p!=A+n;p+=o<<1)
for(int i=0,w=1;i<o;++i,w=1ll*w*W%mod){
int t=1ll*w*p[i+o]%mod;
p[i+o]=(p[i]-t+mod)%mod,p[i]=(p[i]+t)%mod;
}
}
if(!t){
int invN=inv(n);
for(int i=0;i<n;++i)A[i]=1ll*invN*A[i]%mod;
}
}
int main(){
int n=gi(),m=gi(),s=gi();
for(int i=0;i<=m;++i)W[i]=gi();
int LIM=std::max(m,n);
fact[0]=1;for(int i=1;i<=LIM;++i)fact[i]=1ll*fact[i-1]*i%mod;
int lim=std::min(m,n/s);
int N=1,lg=0;while(N<(lim+1)<<1)N<<=1,++lg;
for(int i=0;i<=lim;++i)A[i]=1ll*fact[i]*C(m,i)%mod*fact[n]%mod*pow(m-i,n-i*s)%mod*inv(1ll*pow(fact[s],i)*fact[n-i*s]%mod)%mod;
for(int i=0;i<=lim;++i){
B[i]=inv(fact[lim-i]);
if((lim-i)&1)B[i]=mod-B[i];
}
for(int i=0;i<N;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
ntt(A,N,1),ntt(B,N,1);
for(int i=0;i<N;++i)A[i]=1ll*A[i]*B[i]%mod;
ntt(A,N,0);
int ans=0;
for(int i=0;i<=lim;++i)ans=(ans+1ll*W[i]*A[lim+i]%mod*inv(fact[i])%mod)%mod;
printf("%d\n",ans);
return 0;
}
洛咕 P4491 [HAOI2018]染色的更多相关文章
- [洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...
- P4491 [HAOI2018]染色
题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$ ...
- P4491 [HAOI2018]染色 容斥+NTT
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...
- P4491 [HAOI2018]染色 广义容斥 NTT 生成函数
LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...
- Solution -「HAOI 2018」「洛谷 P4491」染色
\(\mathcal{Description}\) Link. 用 \(m\) 种颜色为长为 \(n\) 的序列染色,每个位置一种颜色.对于一种染色方案,其价值为 \(w(\text{出现恰 ...
- luogu P4491 [HAOI2018]染色
传送门 这一类题都要考虑推式子 首先推出题目要求的式子,枚举正好有\(s\)个颜色的种类(范围\([0,p=min(\lfloor\frac{n}{s}\rfloor,m)]\)),然后对于后面的颜色 ...
- 【LG4491】[HAOI2018]染色
[LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i] ...
- [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)
[BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...
- BZOJ 5306 [HAOI2018] 染色
BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...
随机推荐
- markdown简单常用语法
一.标题(符号要和文字之间加上一个字符的空格)# 一级标题## 二级标题### 三级标题#### 四级标题##### 五级标题###### 六级标题二.列表(符号要和文字之间加上一个字符的空格)有序列 ...
- Forbidden Attack:7万台web服务器陷入被攻击的险境
一些受VISA HTTPS保护的站点,因为存在漏洞容易受到Forbidden攻击,有将近70,000台服务器处于危险之中. 一种被称为"Forbidden攻击"的新攻击技术揭露许多 ...
- DFS服务待书写
https://www.cnblogs.com/xfan1982/p/4120583.html 安装AD域控制 https://www.cnblogs.com/wanggege/p/4605678.h ...
- 常用js对象、数组、字符串的方法
字符串charAt() 返回在指定位置的字符.charCodeAt() 返回在指定的位置的字符的 Unicode 编码.concat() 连接字符串.indexOf() 检索字符串.match() 找 ...
- javascript,object,IDispatchEx笔记
//js: var testObj=new Object; //com内部: testObj=Object::InvokeEx(wFlags==DISPATCH_CONSTRUCT); //注: // ...
- beta冲刺————第一天(1/5)
人员的再次分配: 调走人员:陈裕鹏(原来在本队伍主要进行文章推荐算法的设计) 调入人员:陈邡(原Dipper团队,负责游戏内容的策划案,以及做一些后端的探索工作.) 现队员工作划分: 王国华,吴君毅, ...
- 使用Socket开发http服务器时碰到的问题及处理方法
1. 前言 最近正在为QA测试开发压力测试框架,要为测试人员提供一个结果的图形化表示界面.为了展示数据的及时性,不得不使用lua语言实现一个http服务器.由于http服务需要提供的服务比较简单 ...
- JS中的防抖与节流
什么是防抖?and什么是节流?一起来开心的学习下吧. 首先什么是防抖:就是在一定的时间内事件只发生一次,比如你点击button按钮,1秒内任你单身30年手速点击无数次,他也还是只触发一次.举个例子,当 ...
- Spring IOC容器创建bean过程浅析
1. 背景 Spring框架本身非常庞大,源码阅读可以从Spring IOC容器的实现开始一点点了解.然而即便是IOC容器,代码仍然是非常多,短时间内全部精读完并不现实 本文分析比较浅,而完整的IOC ...
- VS2012中使用SOS调试CLR
之前看了<用WinDbg探索CLR世界>的一些列文章,发现SOS真的是一个非常好的调试.net的工具, 然后又惊喜的在http://blogs.msdn.com/b/marioheward ...