题意

给定长度为 \(\rm |S|\) 的 \(\rm 01\) 串并将其倍长 \(k\) 次得到一个 \(\rm|S|\times k\) 位的二进制数 \(R\) ,求有多少种在 \([0,R-1]\) 中选择

\(m\) 个互不相同的数字使得其异或和为 \(0\) 的方案。

\(\rm |S|\leq 50\ ,k \leq 10^5\ ,m\leq 7\) .

分析

假设选定的 \(m\) 个数字满足 \(A_0 < A_1 < \cdots < A_{m-1}\).

定义状态 \(f_S\) ,每一个二进制位表示 \(A_i\) 是否大于 \(A_{i+1}\) ,最后一位表示 \(A_{m-1}\) 是否小于上界(类似数位dp)。

对于原串每一位构造矩阵,对于循环转移相同,快速幂即可。

总时间复杂度为 \(O(2^{3n}*(log\ k+|S|))\).

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int mod=1e9 + 7;
int m,K,maxn;
char str[130];
int cnt[130];
void add(LL &a,LL b){ a+=b;if(a>=mod) a-=mod; }
struct mt{
LL v[130][130];
mt(){memset(v,0,sizeof v);}
void init(){memset(v,0,sizeof v);}
mt operator *(const mt &rhs)const{
mt res;
rep(i,0,maxn)rep(j,0,maxn)rep(k,0,maxn)
add(res.v[i][j],v[i][k]*rhs.v[k][j]%mod);
return res;
}
}B,tmp;
mt Pow(mt a,int b){
mt res;
rep(i,0,maxn) res.v[i][i]=1;
for(;b;b>>=1,a=a*a) if(b&1) res=res*a;
return res;
}
int main(){
m=gi(),K=gi();maxn=(1<<m)-1;
scanf("%s",str);
int l=strlen(str);
for(int i=0;i<130;++i) cnt[i]=cnt[i>>1]+(i&1);
rep(i,0,maxn) B.v[i][i]=1;
for(int i=0;i<l;++i){
tmp.init();
rep(a,0,maxn)
rep(b,0,maxn)if(!(cnt[b]&1)){
int S=0;
for(int j=0;j<m;++j){
if(a>>j&1) { S|=(1<<j); continue;}
int x=(b>>j&1),y=j==m-1?str[i]-'0':(b>>j+1)&1;//
if(x>y) goto A;
S|=(x<y)<<j;
}
tmp.v[a][S]++;
A:;
}
B=B*tmp;
}
B=Pow(B,K);
printf("%lld\n",B.v[0][maxn]);
return 0;
}

[BZOJ4851][JSOI2016]位运算[矩阵快速幂]的更多相关文章

  1. HDU - 2276 位运算矩阵快速幂

    挺有意思的一道题 要会运用一些常见的位运算操作进行优化 题目的本质就是要求下面的式子 \(dp[i][j+1]=(dp[i-1][j]+dp[i][j]) \mod 2\) (第\(i\)个字符在\( ...

  2. bzoj 2326: [HNOI2011]数学作业【dp+矩阵快速幂】

    矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式, ...

  3. cf352E Jeff and Brackets dp+矩阵快速幂(加法+min运算)

    题意大致是这样的,一共要放 m 段括号序列,每一段放 n 个括号,也就是放 n*m个括号,再每一段中的 n 个位置分别有放左括号和右括号的代价,问最终摆放出合法的括号序列的最小代价是多少. 另外保证, ...

  4. HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表

    2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...

  5. (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。

    In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...

  6. BZOJ3286 Fibonacci矩阵 矩阵 快速幂 卡常

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3286 题意概括 n,m,a,b,c,d,e,f<=10^1000000 题解 神奇的卡常题目 ...

  7. hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...

  8. 矩阵快速幂(以HDU1757为例)

    对于数据量大的求余运算,在有递推式的情况下,可以构造矩阵求解. A - A Simple Math Problem Lele now is thinking about a simple functi ...

  9. BZOJ 2004 公交线路(状压DP+矩阵快速幂)

    注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...

随机推荐

  1. Oracle EBS OM 创建订单

    DECLARE l_header_rec OE_ORDER_PUB.Header_Rec_Type; l_line_tbl OE_ORDER_PUB.Line_Tbl_Type; l_action_r ...

  2. 缓存那些事-zz

    https://tech.meituan.com/cache_about.html 前言 一般而言,现在互联网应用(网站或App)的整体流程,可以概括如图1所示,用户请求从界面(浏览器或App界面)到 ...

  3. excel文件使用navicat工具导入mysql的方法

    1.在excel文件的sheet上,第1行下面插入一行,对应DB里面的字段名称,方便后面导入时做字段匹配: 2.使用Navicat ,打开工具,选择表所在的数据库,然后点击数据库名字,右键Tables ...

  4. sysbench安装、使用、结果解读

    sysbench是一个模块化的.跨平台.多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况.目前sysbench代码托管在github上,项目地址:https://github.c ...

  5. cat > file << EOF 与 cat > file << -

    当我们在使用kickstart 的时候,会遇到写网卡配置文件的情况,这时候我们使用cat > file << EOF 命令等,可以从标准输入中接受输入并保存到 file 文件中. c ...

  6. How to Be Assertive Asking for What You Want Firmly and Fairly

    What Is Assertiveness? It's not always easy to identify truly assertive behavior. This is because th ...

  7. 转战JS(1) 初探与变量类型、运算符、常用函数与转换

    转战JS(1)初探与变量类型.运算符.常用函数与转换 做为一名.NET后台开发人员,正考滤向Web前端开发转型,之前也写过一代前端代码,可是当再回头看JS,并有转向它的意愿的时候,突然发现:原来JS不 ...

  8. MySQL核心之双一原则

    所谓的双一就是指: sync_binlog=; innodb_flush_log_at_trx_commit= innodb_flush_log_at_trx_commit和sync_binlog这两 ...

  9. 读高性能JavaScript编程 第一章

    草草的看完第一章,虽然看的是译文也是感觉涨姿势了, 我来总结一下: 由于 大多数浏览器都是 single process 处理 ui updatas and js execute 于是产生问题: js ...

  10. 026.6 网络编程 tomcat

    ###############Tomcat中相关文件作用    bin:启动关闭服务器的脚本    Conf:配置文件    Lib:Tomcat的jar包,只要部署项目到Tomcat,所有项目可共用 ...