[BZOJ4851][JSOI2016]位运算[矩阵快速幂]
题意
给定长度为 \(\rm |S|\) 的 \(\rm 01\) 串并将其倍长 \(k\) 次得到一个 \(\rm|S|\times k\) 位的二进制数 \(R\) ,求有多少种在 \([0,R-1]\) 中选择
\(m\) 个互不相同的数字使得其异或和为 \(0\) 的方案。
\(\rm |S|\leq 50\ ,k \leq 10^5\ ,m\leq 7\) .
分析
假设选定的 \(m\) 个数字满足 \(A_0 < A_1 < \cdots < A_{m-1}\).
定义状态 \(f_S\) ,每一个二进制位表示 \(A_i\) 是否大于 \(A_{i+1}\) ,最后一位表示 \(A_{m-1}\) 是否小于上界(类似数位dp)。
对于原串每一位构造矩阵,对于循环转移相同,快速幂即可。
总时间复杂度为 \(O(2^{3n}*(log\ k+|S|))\).
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int mod=1e9 + 7;
int m,K,maxn;
char str[130];
int cnt[130];
void add(LL &a,LL b){ a+=b;if(a>=mod) a-=mod; }
struct mt{
LL v[130][130];
mt(){memset(v,0,sizeof v);}
void init(){memset(v,0,sizeof v);}
mt operator *(const mt &rhs)const{
mt res;
rep(i,0,maxn)rep(j,0,maxn)rep(k,0,maxn)
add(res.v[i][j],v[i][k]*rhs.v[k][j]%mod);
return res;
}
}B,tmp;
mt Pow(mt a,int b){
mt res;
rep(i,0,maxn) res.v[i][i]=1;
for(;b;b>>=1,a=a*a) if(b&1) res=res*a;
return res;
}
int main(){
m=gi(),K=gi();maxn=(1<<m)-1;
scanf("%s",str);
int l=strlen(str);
for(int i=0;i<130;++i) cnt[i]=cnt[i>>1]+(i&1);
rep(i,0,maxn) B.v[i][i]=1;
for(int i=0;i<l;++i){
tmp.init();
rep(a,0,maxn)
rep(b,0,maxn)if(!(cnt[b]&1)){
int S=0;
for(int j=0;j<m;++j){
if(a>>j&1) { S|=(1<<j); continue;}
int x=(b>>j&1),y=j==m-1?str[i]-'0':(b>>j+1)&1;//
if(x>y) goto A;
S|=(x<y)<<j;
}
tmp.v[a][S]++;
A:;
}
B=B*tmp;
}
B=Pow(B,K);
printf("%lld\n",B.v[0][maxn]);
return 0;
}
[BZOJ4851][JSOI2016]位运算[矩阵快速幂]的更多相关文章
- HDU - 2276 位运算矩阵快速幂
挺有意思的一道题 要会运用一些常见的位运算操作进行优化 题目的本质就是要求下面的式子 \(dp[i][j+1]=(dp[i-1][j]+dp[i][j]) \mod 2\) (第\(i\)个字符在\( ...
- bzoj 2326: [HNOI2011]数学作业【dp+矩阵快速幂】
矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式, ...
- cf352E Jeff and Brackets dp+矩阵快速幂(加法+min运算)
题意大致是这样的,一共要放 m 段括号序列,每一段放 n 个括号,也就是放 n*m个括号,再每一段中的 n 个位置分别有放左括号和右括号的代价,问最终摆放出合法的括号序列的最小代价是多少. 另外保证, ...
- HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表
2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...
- (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。
In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...
- BZOJ3286 Fibonacci矩阵 矩阵 快速幂 卡常
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3286 题意概括 n,m,a,b,c,d,e,f<=10^1000000 题解 神奇的卡常题目 ...
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
- 矩阵快速幂(以HDU1757为例)
对于数据量大的求余运算,在有递推式的情况下,可以构造矩阵求解. A - A Simple Math Problem Lele now is thinking about a simple functi ...
- BZOJ 2004 公交线路(状压DP+矩阵快速幂)
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...
随机推荐
- Python 数据分析基础小结
一.数据读取 1.读写数据库数据 读取函数: pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_fl ...
- python基础一数据类型之集合
摘要: python基础一中介绍数据类型的时候有集合,所以这篇主要讲集合. 1,集合的定义 2,集合的功能 3,集合的方法 1,集合的定义 list1 = [1,4,5,7,3,6,7,9] set1 ...
- SqlServer PIVOT函数快速实现行转列,UNPIVOT实现列转行
我们在写Sql语句的时候没经常会遇到将查询结果行转列,列转行的需求,拼接sql字符串,然后使用sp_executesql执行sql字符串是比较常规的一种做法.但是这样做实现起来非常复杂,而在SqlSe ...
- C# 字符串的操作
var tStr = "0|1:开门|2:关门|3:门检失败|4:开门|5:开门|6:关门"; ).Split(], s.Split(]).Replace(").Repl ...
- Unity Mono
Unity的mscrolib.dll和.Net的mscrolib.dll 好奇于Unity的mscrolib.dll和.Net Framework提供的mscrolib是否一致. .Net的mscro ...
- MySQL基础之 视图
视图 视图就是从一个表或多个表导出来的一张虚拟的表.通过这个窗口可以看到系统专门提供的数据,方便用户操作的同时增加了安全性. 视图的特点: 1.视图的列可以来自于不同的表. 2.视图是由实际存在的表创 ...
- Win10无法启动软件提示MSVCP110.dll丢失
遇到这种问题,第一种方法可以选择去https://www.microsoft.com/zh-CN/download/details.aspx?id=30679 官网去下载 vc++ 2012 安装和自 ...
- 028、HTML 标签1列表、图片、表格
内容简单看一下理解就行了. HTML 是用来描述网页的一种语言.就是用来编写网页的语言 内容:换行.分割,标签属性,编码方式设置,字体标签,特殊符号,列表.图片.表格标签############### ...
- 《Linux大棚命令百篇下》网络篇的总结
本文是<Linux大棚命令百篇下>网络篇的总结 ping -c 指定数量,在windows下会自动停止,linux下会一直ping下去 -q 简短报告 -s 指定每次ping的数据包大小, ...
- ACM模拟赛
今天是毕业的学长给高二的同学测试.组队比赛,ACM赛制,于是就愉快的和学姐一队啦. 看到英文题面感到恐慌,不过好在不难读懂. A:并没有什么技术含量的模拟题: B:字符串题,给定一些比赛和每个队胜利的 ...