【2019北京集训2】duck 线段树优化建图+tarjan
题目大意:给你$n$个点,第$i$个点有点权$v_i$。你需要将这$n$个点排成一排,第$i$个点的点权能被累加当且仅当这个点前面存在编号在$[l_i,r_i]$中的点,问你这些点应该如何排列,点权和才能最大。
数据范围:$n≤10^5$,$1≤v_i≤10^4$。
这题状压居然给了70分,场上压根没想正解。
我们不难发现,对于点i,我们连接$l_i→i$,$(l_i+1)→i$,....,$r_i→i$的边,然后跑一个tarjan,缩点后我们得到了一棵树。
对于每棵树,我们显然只需要减去这棵树树根中最小的点权即可。
然后这么做显然是$O(n^2)$的,考虑优化一波
不难发现,这里连边是连向一个区间,我们可以用线段树优化连边,就可以把连边数量降低至log级。
时间复杂度:$O(n\log\ n)$
#include<bits/stdc++.h>
#define M 400005
using namespace std; struct edge{int u,next;}e[M*]={}; int head[M]={},use=;
void add(int x,int y){use++;e[use].u=y;e[use].next=head[x];head[x]=use;}
int val[M]={},n; int dfn[M]={},low[M]={},b[M]={},d[M]={},sum[M]={},minn[M]={},t=,cnt=; stack<int> s; struct seg{int l,r,id;}a[M<<]={};
int id[M]={},all=;
int build(int x,int l,int r){
a[x].l=l; a[x].r=r;
if(l==r) return a[x].id=id[l]=++all;
int mid=(l+r)>>;
build(x<<,l,mid);
build(x<<|,mid+,r);
}
int build2(int x,int l,int r){
if(l==r) return ;
int mid=(l+r)>>;
build2(x<<,l,mid);
build2(x<<|,mid+,r);
a[x].id=++all;
add(a[x<<].id,a[x].id);
add(a[x<<|].id,a[x].id);
} void updata(int x,int l,int r,int ID){
if(l<=a[x].l&&a[x].r<=r){
add(a[x].id,ID);
return;
}
int mid=(a[x].l+a[x].r)>>;
if(l<=mid) updata(x<<,l,r,ID);
if(mid<r) updata(x<<|,l,r,ID);
} void dfs(int x){
dfn[x]=low[x]=++t; b[x]=; s.push(x);
for(int i=head[x];i;i=e[i].next)
if(!dfn[e[i].u]) dfs(e[i].u),low[x]=min(low[x],low[e[i].u]);
else if(b[e[i].u]) low[x]=min(low[x],dfn[e[i].u]);
if(dfn[x]==low[x]){
int u; cnt++;
do{
u=s.top(); s.pop();
d[u]=cnt; b[u]=;
if(val[u]!=val[]){
sum[cnt]+=val[u]; minn[cnt]=min(minn[cnt],val[u]);
}
}while(u!=x);
}
} int main(){
memset(minn,,sizeof(minn));
memset(val,,sizeof(val));
scanf("%d",&n);
build(,,n);
build2(,,n);
for(int i=;i<=n;i++){
int l,r; scanf("%d%d%d",&l,&r,val+i);
updata(,l,r,id[i]);
}
for(int i=;i<=all;i++) if(!dfn[i]) dfs(i);
for(int x=;x<=all;x++)
for(int i=head[x];i;i=e[i].next)
if(d[e[i].u]!=d[x]) ++b[d[e[i].u]];
int ans=;
for(int i=;i<=cnt;i++){
ans+=sum[i];
if(!b[i]) ans-=minn[i];
}
cout<<ans<<endl;
}
【2019北京集训2】duck 线段树优化建图+tarjan的更多相关文章
- 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序
题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足: Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆. 现在 ...
- 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)
题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...
- BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan
Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...
- bzoj5017 [Snoi2017]炸弹 (线段树优化建图+)tarjan 缩点+拓扑排序
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5017 题解 这个题目方法挺多的. 线段树优化建图 线段树优化建图的做法应该挺显然的,一个炸弹能 ...
- bzoj5017 炸弹 (线段树优化建图+tarjan+拓扑序dp)
直接建图边数太多,用线段树优化一下 然后缩点,记下来每个点里有多少个炸弹 然后按拓扑序反向dp一下就行了 #include<bits/stdc++.h> #define pa pair&l ...
- Libre OJ 2255 (线段树优化建图+Tarjan缩点+DP)
题面 传送门 分析 主体思路:若x能引爆y,从x向y连一条有向边,最后的答案就是从x出发能够到达的点的个数 首先我们发现一个炸弹可以波及到的范围一定是坐标轴上的一段连续区间 我们可以用二分查找求出炸弹 ...
- BZOJ5017 炸弹(线段树优化建图+Tarjan+拓扑)
Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足: Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被 ...
- 『炸弹 线段树优化建图 Tarjan』
炸弹(SNOI2017) Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸 时,如果另一个炸弹所在位置 Xj 满足: Xi−Ri≤Xj≤Xi ...
- 模拟赛T2 线段树优化建图+tarjan+拓扑排序
然而这只是 70pts 的部分分,考场上没想到满分怎么做(现在也不会) code: #include <cstdio> #include <string> #include & ...
随机推荐
- 2018.12.08 codeforces 939E. Maximize!(二分答案)
传送门 二分答案好题. 题意简述:要求支持动态在一个数列队尾加入一个新的数(保证数列单增),查询所有子数列的 最大值减平均值 的最大值. 然而网上一堆高人是用三分做的. 我们先考虑当前的答案有可能由什 ...
- 2018.10.25 uoj#308. 【UNR #2】UOJ拯救计划(排列组合)
传送门 有一个显然的式子:Ans=∑A(n,i)∗用i种颜色的方案数Ans=\sum A(n,i)*用i种颜色的方案数Ans=∑A(n,i)∗用i种颜色的方案数 这个东西貌似是个NPCNPCNPC. ...
- oracle在exp导出时报错PLS-00201: identifier 'EXFSYS.DBMS_EXPFIL_DEPASEXP' must be declared
报错如下信息: EXP-00008: ORACLE error 6550 encounteredORA-06550: line 1, column 14:PLS-00201: identifier ' ...
- gj12-2 协程和异步io
12.3 epoll+回调+事件循环方式url import socket from urllib.parse import urlparse # 使用非阻塞io完成http请求 def get_ur ...
- 同时安装python2.7和python3.5
同时安装python2.7和python3.5,并配置sublime ctrl+B选择运行python版本 安装python 首先是安装两个版本的python,并配置相应的环境变量 1.在下载安装好P ...
- 简单MVC实现增删改查
反射工具类RelfectionUtils package Utils; import java.lang.reflect.Field; import java.lang.reflect.Invocat ...
- 微信官方api & 非官方api
1.微信公众平台开发者文档 http://mp.weixin.qq.com/wiki/home/index.html 2.微信公众平台 https://mp.weixin.qq.com/ 3.第三方a ...
- Ng第十二课:支持向量机(Support Vector Machines)(二)
7 核函数(Kernels) 最初在“线性回归”中提出的问题,特征是房子的面积x,结果y是房子的价格.假设从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点.那么首 ...
- 上传图片JS插件Plupload
Plupload有以下功能和特点: 1.拥有多种上传方式:HTML5.flash.silverlight以及传统的<input type=”file” />.Plupload会自动侦测当前 ...
- maven之web工程的搭建
参考之前jave application的工程创建的步骤,我们只需要修改最后一步 这样就创建了个web maven工程 与java application应用程序的区别,还有别的区别这里不做多的阐述. ...