题目大意:给你$n$个点,第$i$个点有点权$v_i$。你需要将这$n$个点排成一排,第$i$个点的点权能被累加当且仅当这个点前面存在编号在$[l_i,r_i]$中的点,问你这些点应该如何排列,点权和才能最大。

数据范围:$n≤10^5$,$1≤v_i≤10^4$。

这题状压居然给了70分,场上压根没想正解。

我们不难发现,对于点i,我们连接$l_i→i$,$(l_i+1)→i$,....,$r_i→i$的边,然后跑一个tarjan,缩点后我们得到了一棵树。

对于每棵树,我们显然只需要减去这棵树树根中最小的点权即可。

然后这么做显然是$O(n^2)$的,考虑优化一波

不难发现,这里连边是连向一个区间,我们可以用线段树优化连边,就可以把连边数量降低至log级。

时间复杂度:$O(n\log\ n)$

 #include<bits/stdc++.h>
#define M 400005
using namespace std; struct edge{int u,next;}e[M*]={}; int head[M]={},use=;
void add(int x,int y){use++;e[use].u=y;e[use].next=head[x];head[x]=use;}
int val[M]={},n; int dfn[M]={},low[M]={},b[M]={},d[M]={},sum[M]={},minn[M]={},t=,cnt=; stack<int> s; struct seg{int l,r,id;}a[M<<]={};
int id[M]={},all=;
int build(int x,int l,int r){
a[x].l=l; a[x].r=r;
if(l==r) return a[x].id=id[l]=++all;
int mid=(l+r)>>;
build(x<<,l,mid);
build(x<<|,mid+,r);
}
int build2(int x,int l,int r){
if(l==r) return ;
int mid=(l+r)>>;
build2(x<<,l,mid);
build2(x<<|,mid+,r);
a[x].id=++all;
add(a[x<<].id,a[x].id);
add(a[x<<|].id,a[x].id);
} void updata(int x,int l,int r,int ID){
if(l<=a[x].l&&a[x].r<=r){
add(a[x].id,ID);
return;
}
int mid=(a[x].l+a[x].r)>>;
if(l<=mid) updata(x<<,l,r,ID);
if(mid<r) updata(x<<|,l,r,ID);
} void dfs(int x){
dfn[x]=low[x]=++t; b[x]=; s.push(x);
for(int i=head[x];i;i=e[i].next)
if(!dfn[e[i].u]) dfs(e[i].u),low[x]=min(low[x],low[e[i].u]);
else if(b[e[i].u]) low[x]=min(low[x],dfn[e[i].u]);
if(dfn[x]==low[x]){
int u; cnt++;
do{
u=s.top(); s.pop();
d[u]=cnt; b[u]=;
if(val[u]!=val[]){
sum[cnt]+=val[u]; minn[cnt]=min(minn[cnt],val[u]);
}
}while(u!=x);
}
} int main(){
memset(minn,,sizeof(minn));
memset(val,,sizeof(val));
scanf("%d",&n);
build(,,n);
build2(,,n);
for(int i=;i<=n;i++){
int l,r; scanf("%d%d%d",&l,&r,val+i);
updata(,l,r,id[i]);
}
for(int i=;i<=all;i++) if(!dfn[i]) dfs(i);
for(int x=;x<=all;x++)
for(int i=head[x];i;i=e[i].next)
if(d[e[i].u]!=d[x]) ++b[d[e[i].u]];
int ans=;
for(int i=;i<=cnt;i++){
ans+=sum[i];
if(!b[i]) ans-=minn[i];
}
cout<<ans<<endl;
}

【2019北京集训2】duck 线段树优化建图+tarjan的更多相关文章

  1. 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序

    题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆.  现在 ...

  2. 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)

    题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...

  3. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  4. bzoj5017 [Snoi2017]炸弹 (线段树优化建图+)tarjan 缩点+拓扑排序

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5017 题解 这个题目方法挺多的. 线段树优化建图 线段树优化建图的做法应该挺显然的,一个炸弹能 ...

  5. bzoj5017 炸弹 (线段树优化建图+tarjan+拓扑序dp)

    直接建图边数太多,用线段树优化一下 然后缩点,记下来每个点里有多少个炸弹 然后按拓扑序反向dp一下就行了 #include<bits/stdc++.h> #define pa pair&l ...

  6. Libre OJ 2255 (线段树优化建图+Tarjan缩点+DP)

    题面 传送门 分析 主体思路:若x能引爆y,从x向y连一条有向边,最后的答案就是从x出发能够到达的点的个数 首先我们发现一个炸弹可以波及到的范围一定是坐标轴上的一段连续区间 我们可以用二分查找求出炸弹 ...

  7. BZOJ5017 炸弹(线段树优化建图+Tarjan+拓扑)

    Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被 ...

  8. 『炸弹 线段树优化建图 Tarjan』

    炸弹(SNOI2017) Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸 时,如果另一个炸弹所在位置 Xj 满足: Xi−Ri≤Xj≤Xi ...

  9. 模拟赛T2 线段树优化建图+tarjan+拓扑排序

    然而这只是 70pts 的部分分,考场上没想到满分怎么做(现在也不会) code: #include <cstdio> #include <string> #include & ...

随机推荐

  1. Codeforces Round #541 (Div. 2) D 并查集 + 拓扑排序

    https://codeforces.com/contest/1131/problem/D 题意 给你一个n*m二维偏序表,代表x[i]和y[j]的大小关系,根据表构造大小分别为n,m的x[],y[] ...

  2. SVN安装配置与使用

    http://www.cnblogs.com/skyway/archive/2011/08/10/2133399.html http://www.cnblogs.com/lidabo/archive/ ...

  3. 重启随机游走算法(RWR:Random Walk with Restart)

    1 pagerank算法的基本原理 Pagerank算法是Google的网页排名算法,由拉里佩奇发明.其基本思想是民主表决.在互联网上,如果一个网页被很多其他网页所链接,说明它受到普遍的承认和信赖,那 ...

  4. Java Applet小应用

    开发和部署方式     嵌入到HTML网页中,用<Applet></Applet>标签识别.java环境用浏览器的,在第一次打开时下载,可开发成以后打开,默认不必再次下载.也可 ...

  5. Java网络技术-待续

    TCP Sockets基础     Sockets,是用户程序与TCP/IP协议的中介.     实现TCP Sockets通信,需要本地IP和端口,对方IP和端口.客户端发通信请求,发送或接收流,关 ...

  6. MapGIS计算瓦片数据集

    https://www.docin.com/p-2103834433.html

  7. 如何更改linux文件的拥有者及用户组(chown和chgrp)

    http://blog.csdn.net/hudashi/article/details/7797393 一.基本知识   在Linux中,创建一个文件时,该文件的拥有者都是创建该文件的用户.该文件用 ...

  8. java重定向与请求转发的区别

    最近工作不算太忙,今天在这里对java中的重定向和请求转发稍作总结,希望能帮助到大家. 请求转发: request.getRequestDispatcher().forward(); 重定向: res ...

  9. 《mysql必知必会》学习_第三章_20180724_欢

    P16: use crashcourse; #选择数据库#使用crashcouse这个数据库,因为我没有crashcourse这个数据库,所以用我的hh数据库代替. P17: show databas ...

  10. jvm虚拟机--堆内存

    reserved 保留区域 堆 所有对象实例都在这里分配内存. 是垃圾收集的主要区域("GC 堆").现代的垃圾收集器基本都是采用分代收集算法,主要思想是针对不同的对象采取不同的垃 ...