Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)
前言
配置环境,研究了一整天,踩了很多坑,在网上找了很多资料,发现基本上都没非常明确的教程,所以今天想分享一下配置tensorflow GPU版本的经验,希望能让各位朋友少走些弯路。(PS:一切的前提,你需要有一张Nvidia显卡。我的显卡是 GT940MX)
Tensorflow有两个版本:GPU和CPU版本,CPU的很好安装;GPU 版本需要 CUDA 和 cuDNN 的支持,如果你是独显+集显,那么推荐你用GPU版本的,因为GPU对矩阵运算有很好的支持,会加速程序执行!并且CUDA是Nvidia下属的程序,所以你的GPU最好是Nvidia的,AMD的显卡没有CUDA加速!满足以上条件之后,你需要查看一下你的英伟达GPU是否支持CUDA,以下是Geforce支持的目录:

满足以上条件之后,你就可以安装Tensorflow了!
第一步:安装Anaconda
1.下载和安装
下载地址:https://www.anaconda.com/download/

我系统是64位,所以下载 64-Bit Graphical Installer (631 MB),之后就是进行安装了。

和安装其他软件没有什么区别,需要注意的是这一步,不要勾选**“Add Anaconda to my PATH enviroment variable”,我们后面会手动加入。

接下来就是等待了,安装结束后需要测试是否能正常使用,打开CMD输入“conda”命令,发现提示“'conda' is not recognized as an internal or external command, operable program or batch file.”

这是由于我们没有配置环境变量的原因。
2.配置Anaconda环境变量
我们点击左下角搜索栏搜索“环境变量”

点击环境变量

选择“Path”,点击“编辑”

将以下三个路径加入,注意这里要换成你自己的安装路径。
- C:\Users\t-yaoguo\AppData\Local\Continuum\anaconda3
- C:\Users\t-yaoguo\AppData\Local\Continuum\anaconda3\Scripts
- C:\Users\t-yaoguo\AppData\Local\Continuum\anaconda3\Library\bin

然后点击“确定”保存,这回再测试一下,再cmd中输入“conda -V”,能正常显示版本号,证明已经配置好了。

第二步:安装TensorFlow-GPU
打开tensorflow官网:https://www.tensorflow.org/install/install_windows#installing_with_anaconda

跟着操作步骤走就可以了。
1.创建conda环境
通过调用下列命令,创建一个名为“tensorflow”的conda环境:
conda create -n tensorflow pip python=3.5

等待相应包的安装,如果国内网络太慢的话,可以为conda设置清华源,这样速度能快一点,具体配置过程,网上查一下吧,此处不再讲述。如果看到这样的提示,就证明conda环境创建成功。

2.激活环境
通过以下命令激活conda环境:
activate tensorflow

这样就进入了刚创建的“tensorflow”环境。
3.安装tensorflow-gpu
安装GPU版本的tensorflow需要输入以下命令:
pip install --ignore-installed --upgrade tensorflow-gpu
如果只需要安装CPU版本的tensorflow则输入以下命令:
pip install --ignore-installed --upgrade tensorflow

这样就安装成功了。
注意:务必注意一点,在安装完tensroflow后,由于我们是新创建的conda环境,该环境中基本上是空的,有很多包和IDE并没有安装进来,例如“Ipython”,“spyder”此时如果我们在该环境下打开spyder/Ipyton/jupyter notebook等,会发现其实IDE使用的kernel并不是新建立的这个环境的kernel,而是“base”这个环境的,而“base”环境中我们并没有安装tensorflow,所以一定无法import。这也就是为什么有很多人在安装好tensorflow后仍然在IDE里无法正常使用的原因了。
通过以下命令安装Anaconda基础包
conda install anaconda
这回,我们测试一下是否能import tensorflow

程序报错,这是由于我们虽然安装好了tensorflow-gpu,但是还需要安装CUDA Toolkit 和 cuDNN。
第三步:安装CUDA Toolkit + cuDNN
1.查看需要安装的CUDA+cuDNN版本
注意,tensorflow是在持续更新的,具体安装的CUDA和cuDNN版本需要去官网查看,要与最新版本的tensorflow匹配。
点击查看最新tensorflow支持的CUDA版本:https://www.tensorflow.org/install/install_windows#requirements_to_run_tensorflow_with_gpu_support

现在(PS:此博客书写日期 2018年7月5日)最新版tensorflow支持的是 CUDA® Toolkit 9.0 + cuDNN v7.0,一定注意,安装的版本一定一定要正确,不要看NVIDIA官网推出CUDA® Toolkit 9.2了就感觉最新版的更好,而安装最新版,这样很可能会导致tensorflow无法正常使用,所以一定要跟着tensorflow 官网的提示来。
2.下载CUDA + cuDNN
在这个网址查找CUDA已发布版本:https://developer.nvidia.com/cuda-toolkit-archive

进入下载界面

下载好CUDA Toolkit 9.0 后,我们开始下载cuDnn 7.0,需要注意的是,下载cuDNN需要在nvidia上注册账号,使用邮箱注册就可以,免费的。登陆账号后才能下载。
cuDNN历史版本在该网址下载:https://developer.nvidia.com/rdp/cudnn-archive


这样,我们就下载好了 CUDA Toolkit 9.0 和 cuDnn 7.0,下面我们开始安装。

3.安装 CUDA Toolkit 9.0 和 cuDnn 7.0
至关重要的一步:卸载显卡驱动
由于CUDA Toolkit需要在指定版本显卡驱动环境下才能正常使用的,所以如果我们已经安装了nvidia显卡驱动(很显然,大部分人都安装了),再安装CUDA Toolkit时,会因二者版本不兼容而导致CUDA无法正常使用,这也就是很多人安装失败的原因。而CUDA Toolkit安装包中自带与之匹配的显卡驱动,所以务必要删除电脑先前的显卡驱动。
安装


此处选择“自定义(高级)”

勾选所有

一路通过即可。
接下来,解压“cudnn-9.0-windows10-x64-v7.zip”,将一下三个文件夹,拷贝到CUDA安装的根目录下。

这样CUDA Toolkit 9.0 和 cuDnn 7.0就已经安装了,下面要进行环境变量的配置。
配置环境变量
将下面四个路径加入到环境变量中,注意要换成自己的安装路径。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\libnvvp
到此,全部的安装步骤都已经完成,这回我们测试一下。
第四步:测试
1.查看是否使用GPU
import tensorflow as tf
tf.test.gpu_device_name()

2.查看在使用哪个GPU
from tensorflow.python.client import device_lib
device_lib.list_local_devices()

好了大功告成!
希望这篇博文能给大家带来帮助,如有任何错误,欢迎指教交流。
Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)的更多相关文章
- Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)(转载)
win7(win10也适用)系统安装GPU/CPU版tensorflow Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程) 目录 2.配置 ...
- 区块链学习——HyperLedger-Fabric v1.0环境搭建详细教程
相对与v0.6版本来说,1.0版本改变较大,此处不多说,只是将小白自己搭建1.0环境的过程分享给大家.希望对大家能有所帮助! 这一篇可能对前面的环境搭建会写的有些粗略,如有疑问,可阅读上一篇V0.6版 ...
- LNMP环境搭建详细教程
之前有一篇博客写的是LAMP的环境搭建,今天来详细介绍一下另外一个模式——LNMP=Linux+Nginx+MySQL+PHP. 一.在Linux系统下nginx的安装过程,先到http://ngin ...
- [新手教程]windows 2003 php环境搭建详细教程(转)
对于windows服务器的php环境配置一直是是新人朋友的难题,也难倒了很多高手.这里分享一个新手教程,给那些建站新人使用.本教程来自朋友吴文辉的博客,欢迎大家有时间可以访问他的博客:吴文辉博客htt ...
- 区块链学习——HyperLedger-Fabric v0.6环境搭建详细教程
v0.6 的架构相对简单,适合作为实验或学习来使用. 一.环境准备 一台云服务器(笔者使用的是阿里云的1核-2GB内存) Go语言环境 Docker安装 docker-compose安装 二.环境搭建 ...
- Android安卓开发环境搭建详细教程
安装目录:步骤1 安装JDK步骤2 安装 Android SDK ----http://www.androiddevtools.cn/ 步骤3 安装Tomcat步骤4 安装Ant步骤5 安装Eclip ...
- Node环境搭建--详细教程
下载地址: https://nodejs.org/en/download/ 版本:10.15.3 检测是否安装成功:我之前安装的是10.14版本
- win7下android开发环境搭建(win7 64位)
win7下android开发环境搭建(win7 64位) 一.安装 JDK 下载JDK最新版本,下载地址如下: http://www.oracle.com/technetwork/java/jav ...
- win10下Spark的环境搭建
win10下Spark的环境搭建 2018-08-19 18:36:45 一.jdk 1.8.0 安装与配置 二.scala 2.11.8 安装与配置http://www.scala-lang.or ...
随机推荐
- VS调试IDAPython脚本
本文最后修改时间:20180213 1.安装VS插件PTVS , 这一步与第2步中安装版本应该一致,否则最后调试时会连不上 https://github.com/Microsoft/PTVS/ 2.安 ...
- 【软件需求工程与建模 - 小组项目】第6周 - 成果展示3 - 软件设计规格说明书V4.1
成果展示3 - 软件设计规格说明书V4.1
- web前端(12)—— 页面布局2
本篇博文,主要就讲定位的问题,也就是页面布局里最重要的,本篇博文不出意外的话,也是css的最后一篇博文了 定位,position属性 定位有三种: 相对定位 绝对定位 固定定位 相对定位,positi ...
- xpath语法大全
XPath 节点 XPath 术语 节点 在 XPath 中,有七种类型的节点:元素.属性.文本.命名空间.处理指令.注释以及文档(根)节点.XML 文档是被作为节点树来对待的.树的根被称为文档节点或 ...
- Linux: yum 命令说明
yum命令是在Fedora和RedHat以及SUSE中基于rpm的软件包管理器,它可以使系统管理人员交互和自动化地更细与管理RPM软件包,能够从指定的服务器自动下载RPM包并且安装,可以自动处理依赖性 ...
- LeetCode算法题-Path Sum(Java实现)
这是悦乐书的第169次更新,第171篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第28题(顺位题号是112).给定二叉树和整数sum,确定树是否具有根到叶路径,使得沿路 ...
- LeetCode算法题-Binary Tree Level Order Traversal II(Java实现)
这是悦乐书的第165次更新,第167篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第24题(顺位题号是107).给定二叉树,返回其节点值的自下而上级别顺序遍历(即从左到右 ...
- Java程序设计教程(第2版)阅读总结
为了重新拣起对Java的回忆,只好又找了本基础书.由于成都高新图书馆的计算机书实在不多,只能找到这本了.简单读了下Java部分,总结如下: 优点:虽然本书也是作者编的而不是作者著的,但是可以看出作者编 ...
- 上传--spring-boot
<dependency> <groupId>commons-fileupload</groupId> <artifactId>commons-f ...
- ubuntu18.04 下 使用conda安装requirement.txt指定的依赖包
首先创建特定的虚拟环境 conda create -n temp_test python=3.5 conda install anaconda 切换到该环境 conda activate temp_t ...