传送门

线段树优化dpdpdp入门题。

要求把nnn个数分成kkk段,每段价值为里面不相同的数的个数,求所有段的价值之和最大值。n≤35000,k≤50n\le35000,k\le50n≤35000,k≤50


先考虑直接暴力dpdpdp,fj,if_{j,i}fj,i​表示把前iii个分成jjj组的最优值。

显然fj,i=max⁡j−1≤k≤i−1{fj−1,k+W(k+1,i)}f_{j,i}=\max\limits_{j-1\le k\le i-1}\{f_{j-1,k}+W(k+1,i)\}fj,i​=j−1≤k≤i−1max​{fj−1,k​+W(k+1,i)}

于是就有了一个O(n2k)O(n^2k)O(n2k)的做法。

现在考虑优化求fj,i+W(k+1,i)f_{j,i}+W(k+1,i)fj,i​+W(k+1,i)的做法。

我们考虑增量法,即枚举当前层的iii的时候考虑coloricolor_icolori​对之前所有的fff的贡献。

对于这种相同颜色只考虑一次贡献的题有这么一个固定的套路:我们记当前颜色上一次出现的位置为pre,则这个颜色会对[pre+1,i]或者[pre,i-1]这一段产生贡献

对于这道题可以动态维护fj−1,k+W(k+1,j)f_{j-1,k}+W(k+1,j)fj−1,k​+W(k+1,j)这个值,因此我们最开始将fj−1,if_{j-1,i}fj−1,i​全部放到一棵线段树上面作为初始值,走到位置iii时把[prei,i−1][pre_i,i-1][prei​,i−1]维护的值全部加111即可。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int N=35005,K=55;
int tmp=0,a[N],f[2][N],n,k,pre[N],mp[N];
namespace SGT{
	#define lc (p<<1)
	#define rc (p<<1|1)
	#define mid (l+r>>1)
	int mx[N<<2],add[N<<2];
	inline void pushup(int p){mx[p]=max(mx[lc],mx[rc]);}
	inline void pushnow(int p,int v){mx[p]+=v,add[p]+=v;}
	inline void pushdown(int p){if(add[p])pushnow(lc,add[p]),pushnow(rc,add[p]),add[p]=0;}
	inline void build(int p,int l,int r){
		add[p]=0;
		if(l==r){mx[p]=f[tmp^1][l];return;}
		build(lc,l,mid),build(rc,mid+1,r),pushup(p);
	}
	inline void update(int p,int l,int r,int ql,int qr,int v){
		if(ql>qr)return;
		if(ql<=l&&r<=qr)return pushnow(p,v);
		pushdown(p);
		if(qr<=mid)update(lc,l,mid,ql,qr,v);
		else if(ql>mid)update(rc,mid+1,r,ql,qr,v);
		else update(lc,l,mid,ql,mid,v),update(rc,mid+1,r,mid+1,qr,v);
		pushup(p);
	}
	inline int query(int p,int l,int r,int ql,int qr){
		if(ql>qr)return -0x3f3f3f3f;
		if(ql<=l&&r<=qr)return mx[p];
		pushdown(p);
		if(qr<=mid)return query(lc,l,mid,ql,qr);
		if(ql>mid)return  query(rc,mid+1,r,ql,qr);
		return max(query(lc,l,mid,ql,mid),query(rc,mid+1,r,mid+1,qr));
	}
	#undef lc
	#undef rc
	#undef mid
}
int main(){
	n=read(),k=read();
	memset(mp,-1,sizeof(mp));
	for(ri i=1;i<=n;++i)a[i]=read(),pre[i]=mp[a[i]],mp[a[i]]=i;
	memset(f[tmp],-0x3f,sizeof(f[tmp]));
	f[tmp][0]=0;
	for(ri tt=1;tt<=k;++tt){
		tmp^=1;
		memset(f[tmp],-0x3f,sizeof(f[tmp]));
		SGT::build(1,0,n);
		for(ri i=1;i<=n;++i){
			SGT::update(1,0,n,pre[i],i-1,1);
			f[tmp][i]=SGT::query(1,0,n,tt-1,i-1);
		}
	}
	cout<<f[tmp][n];
	return 0;
}

2019.03.09 codeforces833B. The Bakery(线段树优化dp)的更多相关文章

  1. CodeForces 834D The Bakery(线段树优化DP)

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  2. Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP

    D. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

  3. CF833B The Bakery 线段树,DP

    CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...

  4. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  5. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  6. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  7. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  8. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  9. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

随机推荐

  1. Shopt命令(删除排除)

    有时候我们需要反选某个文件以外的其他文件,就会用到rm -rf!(file)命令,但是有时候这条命令会报错显示 -bash: !: event not found 解决办法:shopt -s extg ...

  2. 提升lua代码效率

    local test = {} , do test[ i ] = {} end local t1 = os.clock( ) , do test[ ].mValue = end local t2 = ...

  3. weui复选框无法传值

    //原来的反了 function changeState (ele) { if(ele.checked){ ele.setAttribute('checked','checked') console. ...

  4. 一个简单的struts2上传图片的例子

    https://www.cnblogs.com/yeqrblog/p/4398914.html 在我的大创项目中有对应的应用

  5. php 计算坐标点方圆周围多少米的坐标算法

    //地球半径 6371千米 const EARTH_ROUNT = 6371; /** * @param $distance 方圆多少千米 默认500米 */ private function _ge ...

  6. 复杂JSON对象的查询与合并

    一个表里存放了全国各地地区.省.市.县区的数据,为了提高加载速度我保存成了本地的JSON文件 结构大致如下: [{ "text": "中华人民共和国", &qu ...

  7. CodeWarrior 10 添加/修改 头文件路径

    当使用CodeWarrior 10时,默认使用大名鼎鼎的GCC编译器. 我们在构建工程的时候,往往按模块分类文件夹,那么就存在需要包含头文件路径的问题.那么如何加入头文件的路径呢?见下文. 1.打开工 ...

  8. 20175314薛勐 MyOD(课下作业,选做)

    MyOD(课下作业,选做) 要求 编写MyOD.java 用java MyOD XXX实现Linux下od -tx -tc XXX的功能 思路 伪代码: 读取命令行输入的参数(文件名) 以16为每个字 ...

  9. 数据结构python编程总结

    大数据.空间限制 布隆过滤器 使用很少的空间就可以将准确率做到很高的程度(网页黑名单系统.垃圾邮件过滤系统.爬虫的网址判重系统等) 有一定的失误率 单个样本的大小不影响布隆过滤器的大小 n个输入.k个 ...

  10. Android使用scrollview截取整个的屏幕并分享微信

    先看看截图效果图 截取scrollview的屏幕 /** * 截取scrollview的屏幕 **/ public static Bitmap getScrollViewBitmap(ScrollVi ...