You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12959    Accepted Submission(s): 6373

Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point. 

 
Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the number of intersections, and one line one case.
 
Sample Input
2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0
 
Sample Output
1
3

叉积求线段判交的参考链接:

https://www.cnblogs.com/Duahanlang/archive/2013/05/11/3073434.html

https://www.cnblogs.com/tuyang1129/p/9390376.html

C++代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct Point{
double x1,y1,x2,y2;
}node[];
int cross(const Point &a, const Point &b){
double k1 = (a.x2 - a.x1) * (b.y1 - a.y1) - (a.y2 - a.y1) * (b.x1 - a.x1);
double k2 = (a.x2 - a.x1) * (b.y2 - a.y1) - (a.y2 - a.y1) * (b.x2 - a.x1);
if(k1 * k2 <= ){
return ;
}
else
return ;
}
int main(){
int n;
while(scanf("%d",&n),n){
int ans = ;
for(int i = ; i < n; i++){
scanf("%lf%lf%lf%lf",&node[i].x1,&node[i].y1,&node[i].x2,&node[i].y2);
}
for(int i = ; i < n-; i++){
for(int j = i + ; j < n; j++){
ans += (cross(node[i],node[j])) && (cross(node[j],node[i]));
}
}
printf("%d\n",ans);
}
return ;
}

(叉积,线段判交)HDU1086 You can Solve a Geometry Problem too的更多相关文章

  1. HDU1086 You can Solve a Geometry Problem too(计算几何)

    You can Solve a Geometry Problem too                                         Time Limit: 2000/1000 M ...

  2. You can Solve a Geometry Problem too(线段求交)

    http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2000 ...

  3. (线段判交的一些注意。。。)nyoj 1016-德莱联盟

    1016-德莱联盟 内存限制:64MB 时间限制:1000ms 特判: No通过数:9 提交数:9 难度:1 题目描述: 欢迎来到德莱联盟.... 德莱文... 德莱文在逃跑,卡兹克在追.... 我们 ...

  4. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  5. hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. HDU1086You can Solve a Geometry Problem too(判断线段相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  7. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  8. You can Solve a Geometry Problem too(判断两线段是否相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  9. hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

随机推荐

  1. LODOOP中的各种边距 打印项、整体偏移、可打区域、内部边距

    Lodop中的打印项内容位置定位,除了打印项本身的top,left值,也会受其他设定或打印机的影响.打印开发,先用虚拟打印机测试出正确结果,然后客户端用打印维护微调常见问题:1.设置打印项相对于纸张居 ...

  2. HDU 1074 Doing Homework(经典状压dp)

    题目链接  Doing Homework        Ignatius has just come back school from the 30th ACM/ICPC. Now he has a ...

  3. Windows下安装Ubuntu 16.04双系统

    本文已有更新:新文章 [2016-05-09 更新说明: ①:我原本写的Ubuntu 16.04安装博客中在安装系统时,在引导项部分,有一点问题没有注意到,感谢@小段阿誉的指出,在下面我有了说明: ② ...

  4. Docker自制CentOS镜像

    系统环境:CentOS 7.3 将yum源切换到阿里源 可以直接写成一个脚本 #!/bin/sh mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos ...

  5. DRF 版本和认证

    Django Rest Framework 版本控制组件 DRF的版本 版本控制是做什么用的, 我们为什么要用 首先我们要知道我们的版本是干嘛用的呢~~大家都知道我们开发项目是有多个版本的~~ 当我们 ...

  6. Spring03-AOP

    一. AOP介绍 1. Aop介绍 AOP(Aspect Oriented Programming),即面向切面编程,可以说是OOP(Object Oriented Programming,面向对象编 ...

  7. 【洛谷U20626】gemo 容斥 FWT 高斯消元

    题目大意 给你一个无向图,有\(m\)个询问,每次给你一个点\(x\)和一个点集\(S\),问你从\(x\)开始走,每次从一个点随机的走到与这个点相邻的点,问你访问\(S\)中每个点至少一次的期望步数 ...

  8. hdu 5877 Weak Pair (Treap)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877 题面; Weak Pair Time Limit: 4000/2000 MS (Java/Other ...

  9. 【arc071f】Infinite Sequence(动态规划)

    [arc071f]Infinite Sequence(动态规划) 题面 atcoder 洛谷 题解 不难发现如果两个不为\(1\)的数连在一起,那么后面所有数都必须相等. 设\(f[i]\)表示\([ ...

  10. 【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)

    [UOJ#236][IOI2016]railroad(欧拉回路,最小生成树) 题面 UOJ 题解 把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\) ...