Tennis Game

CodeForces - 496D

通过排列组合解决问题。

首先两组不同素数的乘积,是互不相同的。这应该算是唯一分解定理的逆运用了。

然后是,输入中的素数,任意组合,就是n的因数,而且不会重复。

然后只需要知道,每个质数在所有组合中出现了几次就行了。

如果某一个质数再输入中只出现了一次,那么它在组合中出现的次数就应该是其他所有质数在输入中出现次数加一的乘积。

如果某一个质数x在输入中出现了多次,那么便只需把x,x*x, x*x*x等数暂且当做一个输入中的数来计算就是了,然后相加;容易知道这样的话,相当于x出现次数为1,2,3,4...... 于是用等差数列求和的结果乘上上一条说的结果就行了。

之后便可以将质数的(组合中出现的次数)次方    全部乘起来就行了。

 #include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)+1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
ll num[maxn],res[maxn];
ll l[maxn],r[maxn]; ll q_pow(ll a,ll b)
{
ll ans=;
while(b){
if(b&){ans*=a;ans%=mod;}
a*=a;a%=mod;
b>>=;
}
return ans;
} int main()
{
int m;
scanf("%d",&m);
int maxx = ;
for(int i=;i<=m;i++){
int x;
scanf("%d",&x);
maxx=max(maxx,x);
num[x]++;
}
int t=;
for(int i=;i<=maxx;i++){
if(num[i]){
t++;
res[t]=num[i];
num[t]=i;
}
}
l[]=;
for(int i=;i<=t;i++){
l[i]=(+res[i])*l[i-];
l[i]%=(mod-);
}
r[t+]=;
for(int i=t;i>=;i--){
r[i]=(res[i]+)*r[i+];
r[i]%=(mod-);
} ll ans=;
for(int i=;i<=t;i++){
ll d = (l[i-])*(r[i+]);
d%=(mod-); ll p = res[i]*(res[i]+)/;
p%=(mod-); d = d*p;
d%=(mod-);
ans*=q_pow(num[i],d);
ans%=mod;
}
printf("%lld",ans); return ;
}

Tennis Game CodeForces - 496D(唯一分解定理,费马大定理)的更多相关文章

  1. codeforces C. Primes and Multiplication(快速幂 唯一分解定理)

    题目链接:http://codeforces.com/contest/1228/problem/C 题解:给定一个函数f,g,题目有描述其中的表达式含义和两者之间的关系. 然后计算: 首先把给定的x用 ...

  2. Codeforces Round #520 (Div. 2) B. Math 唯一分解定理+贪心

    题意:给出一个x 可以做两种操作  ①sqrt(x)  注意必须是完全平方数  ② x*=k  (k为任意数)  问能达到的最小的x是多少 思路: 由题意以及 操作  应该联想到唯一分解定理   经过 ...

  3. B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板

    You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...

  4. NOIP2009Hankson 的趣味题[唯一分解定理|暴力]

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  5. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  6. uva10375 Choose and Divide(唯一分解定理)

    uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...

  7. 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...

  8. UVA 10375 Choose and divide【唯一分解定理】

    题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...

  9. 唯一分解定理 poj 1365

    一行代表一个数 x 给你底数和指数 求x-1的唯一分解定理的底数和指数 从大到小输出 #include<stdio.h> #include<string.h> #include ...

随机推荐

  1. 二、core abp 数据库迁移

    一.数据库迁移-ABP(库) 1.配置链接数据库:  贴以下代码: { "ConnectionStrings": { "Default": "Serv ...

  2. oldriver

    功能: 1:数据详情:统计商家所关联邮箱的商家店铺的当天或者最近一周,最近一个月的订单情况,sku,order,value,回评率数据在具体哪个国家的销售情况. 增强版提供更丰富的数据详情和自定义功能 ...

  3. JarvisOJ Basic 美丽的实验室Logo

    出题人丢下个logo就走了,大家自己看着办吧 扔进01Editor中,发现最后有14844个不属于jpg的字节 扔进Kali中用dd命令提取出附加的文件,可以看到也是一个图片,图片上的文字即是flag

  4. BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏

    题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...

  5. 关闭VS2017脚本调试 已启用 Visual Studio 中的 Chrome 脚本调试

    转载:https://blog.csdn.net/lilinoscar/article/details/79114721 每当调试项目时,都是重新打开一个浏览器窗口,而且关闭调试后,也会关闭窗口,很麻 ...

  6. Educational Codeforces Round 62 (Rated for Div. 2)

    A. Detective Book 题意:一个人读书  给出每一章埋的坑在第几页可以填完 . 一个人一天如果不填完坑他就会一直看 问几天能把这本书看完 思路:模拟一下 取一下过程中最大的坑的页数  如 ...

  7. HDU - 3917(朴素LIS + 最大流)

    题意: 求出所有的最长上升子序列的个数且每个元素只能用一次 解析: 呵...呵...呵..呵..emm... 再见 我死了...wa了15发之后...原来不能用~  要用 != EOF 这题算水题吧. ...

  8. 【XSY2032】简单粗暴的题目 组合数

    题目描述 给你\(n,k,a_1\ldots a_n\),设 \[ ans_n=\sum_{i=1}^n{(\sum_{j=i}^ns(j))}^k\\ \] 求\(ans_1\ldots ans_n ...

  9. Codeforces Global Round 2 D. Frets On Fire (动态开点线段树,沙雕写法)

    题目链接:D. Frets On Fire 思路:明明可以离散化+二分写,思路硬是歪到了线段树上,自闭了,真实弟弟,怪不得其他人过得那么快 只和查询的区间长度有关系,排完序如果相邻的两个点的差值小于等 ...

  10. 【POJ1083】 Moving Tables (并行的搬运)

    BUPT2017 wintertraining(15) #6E 题意 房间1和2,3和4,...,399和400共用一节走廊,有q次从房间li到ri的搬运桌子,一次搬运10分钟.两个搬运如果走廊有重叠 ...