Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions:75394   Accepted: 21747

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

思路:
好久没有写博客了,做这个题,我写了一整天,就因为一句话没有写好,我实在是想骂人呀!
首先离散化,避免超时,避免超内存,这个我相信你在别的博客上可以看见,我就不多说,线段树的节点里面,存的是下面全部相同的数字,也就是说,如果这个节点,代表的是l到r的范围内的数,
如果l到r里面,数字完全相同,那么,这个节点就存下这个数,否则,那我们就存下-1.如果查询的时候遇到-1,那我们就继续向下查询就行了,直到查到不为-1或到达叶子节点为止。
我的错误是update的最后一行,忽略了下面两个节点都是-1的情况
AC代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
int s[400086];
bool book[400086];
struct node
{
int l,r,num;
bool lazy;
}tree[1600099];
int x[100086],y[100086]; void build(int t,int l,int r)
{
tree[t].l=l;tree[t].r=r;
tree[t].num=-1;tree[t].lazy=false;
if(l==r){return;}
int mid=(l+r)/2;
build(t<<1,l,mid);
build((t<<1)|1,mid+1,r);
} void push_down(int t)
{
tree[t].lazy=false;
tree[t<<1].num=tree[t].num;
if(tree[t<<1].l!=tree[t<<1].r){tree[t<<1].lazy=true;} tree[(t<<1)|1].num=tree[t].num;
if(tree[(t<<1)|1].l!=tree[(t<<1)|1].r){tree[(t<<1)|1].lazy=true;}
} void update(int t,int l,int r,int e)
{
if(tree[t].lazy){push_down(t);}
if(tree[t].l==l&&r==tree[t].r){
tree[t].num=e;
if(l!=r){tree[t].lazy=true;}
return;
} int mid=(tree[t].l+tree[t].r)>>1;
if(r<=mid){update(t<<1,l,r,e);}
else if(l>mid){update((t<<1)|1,l,r,e);}
else{
update((t<<1),l,mid,e);
update((t<<1)|1,mid+1,r,e);
}
if(tree[t<<1].num!=tree[(t<<1)|1].num||tree[t<<1].num==-1||tree[(t<<1)|1].num==-1){tree[t].num=-1;}
} int query(int t)
{
int ans=0;
if(tree[t].num==-1){
if(tree[t].lazy){push_down(t);}
if(tree[t].l==tree[t].r){return 0;}
ans+=query(t<<1);
ans+=query((t<<1)|1);
}
else{
if(!book[tree[t].num]){book[tree[t].num]=true;return 1;}
}
return ans;
} int main()
{
int T,n;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
memset(book,0,sizeof(book));
memset(s,0,sizeof(s));
int nn=0;
for(int i=1;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
s[++nn]=x[i];s[++nn]=y[i];
}
sort(s+1,s+nn+1);
int siz=unique(s+1,s+nn+1)-s-1;
int k=siz;
for(int i=1;i<=k-1;i++){
if(s[i+1]-s[i]>1){s[++siz]=s[i]+1;}
}
sort(s+1,s+siz+1);
build(1,1,siz);
int l,r;
for(int i=1;i<=n;i++){
l=lower_bound(s+1,s+siz+1,x[i])-s;
r=lower_bound(s+1,s+siz+1,y[i])-s;
update(1,l,r,i);
}
printf("%d\n",query(1)); }
}

  

 

POJ 2528 Mayor's posters (线段树+离散化)的更多相关文章

  1. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  2. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  3. poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  4. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  5. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  6. POJ 2528 Mayor’s posters (线段树段替换 && 离散化)

    题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000).求出最后还能看见多少张海报. 分析 ...

  7. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  8. poj 2528 Mayor's posters(线段树)

    题目:http://poj.org/problem?id=2528 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度.现在往墙上贴N张海报,每张海报的宽度是任意的, 但是必定是单位宽度的整数 ...

  9. POJ 2528 Mayor's posters (线段树)

    题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...

随机推荐

  1. vue表單

    使用v-model進行表單雙向數據綁定. 可以根據控件決定數據的類型,可以綁定input.單選.複選.下拉框等 可以使用number和trim等修飾符.

  2. Maven自动部署jar包到Neuxs

      1. 修改maven配置(setting.xml) 添加neuxs的用户名和密码: <server> <id>my-deploy-release</id> &l ...

  3. DEV GridControl/TreeList 中ShowingEditor使用

    ShowingEditor事件对我来说就是控制单元格的编辑属性,在特定场景中(TreeList中要求子节点某些列可编辑,父节点不可编辑)就需要使用此事件来实现,与此同时,上一篇也介绍了特定场景单元格样 ...

  4. How to remove unwant Internet Explorer Context Menu

    HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\MenuExt

  5. Nintex History in Form Table

    一.设置参数 二.调用WebService 三.For Each 调用 四.拼写HTML Table 结果: 特别提示:过滤人只要根据人来循环即可

  6. 部署 Django

    补充说明:关于项目部署,历来是开发和运维人员的痛点.造成部署困难的主要原因之一是大家的Linux环境不同,这包括发行版.解释器.插件.运行库.配置.版本级别等等太多太多的细节.因此,一个成功的部署案例 ...

  7. [十]SpringBoot 之 普通类获取Spring容器中的bean

    我们知道如果我们要在一个类使用spring提供的bean对象,我们需要把这个类注入到spring容器中,交给spring容器进行管理,但是在实际当中,我们往往会碰到在一个普通的Java类中,想直接使用 ...

  8. POI Excel 单元格内容类型判断并取值

    个人用到的 String birthdayVal = null;                                                                     ...

  9. springMVC整理05--数据校验、格式化 & 其他注解 & 数据绑定流程

    1.  数据校验.数据格式化 参考博客 http://www.importnew.com/19477.html 1.1  数据校验 使用 spring 数据校验,先要导入校验器的 jar: <! ...

  10. restfull api交互常用状态码

    2xx (成功类别) 200 Ok:标准的 HTTP 响应,表示 GET.PUT 或 POST 的处理成功. 201 Created:在创建新实例时,应返回此状态代码.例如,使用 POST 方法创建一 ...