c/c++ 线性表之单向循环链表

线性表之单向循环链表

不是存放在连续的内存空间,链表中的每个节点的next都指向下一个节点,最后一个节点的下一个节点不是NULL,而是头节点。因为头尾相连,所以叫单向循环链表。

真实的第一个节点是头节点,头节点不存放数据,单纯为了编写程序方便。但是下面注释里写的【第一个节点】的含义是头节点的下一节点,也就是真实存放数据的第一个节点。

下面的代码实现了以下功能

函数 功能描述
push_back 从链表的最后插入节点
push_front 从链表的起始插入节点
show_list 打印出链表里每个节点的值
pop_back 删除链表最后一个节点
pop_front 删除链表起始节点
insert_val 在合适的位置插入一个节点;
比如原来的链表:1->3->NULL,当要插入的节点的值为2的时候,就会在1和3之间插入这个节点,插入后的链表:1->2->3->NULL
find 查找指定的节点
length 返回链表中节点的个数
delete_val 删除指定的节点
sort 排序,重新排列节点
resver 按倒序,重新排列节点
clear 释放除了头节点之外的所有节点所占用的内存空间
destroy 释放所有节点的所占用的内存空间,包括头节点

whilenode.h

#ifndef __SEQNODE__
#define __SEQNODE__ #include <stdio.h>
#include <malloc.h>
#include <assert.h>
#include <memory.h>
#include <stdbool.h> #define ElemType int typedef struct Node{
ElemType data;
struct Node* next;
}Node; typedef struct NodeList{
Node* first;
Node* last;
size_t size;
}NodeList; void init(NodeList*);
void push_back(NodeList*, ElemType);
void push_front(NodeList*, ElemType);
void pop_back(NodeList*);
void pop_front(NodeList*);
void show_list(NodeList*);
void insert_val(NodeList*, ElemType);
Node* find(NodeList*, ElemType);
void delete_val(NodeList*, ElemType);
void sort(NodeList*);
void sort1(NodeList*);
void resver(NodeList*);
void resver1(NodeList*);
void resver2(NodeList*);
void clear(NodeList*);
void destroy(NodeList*); #endif

whilenode.c

#include "seqnode.h"

void init(NodeList* list){
list->first = (Node*)malloc(sizeof(Node));
list->last = list->first;
list->last->next = NULL;
list->size = 0;
} Node* create_node(ElemType val){
Node* node = (Node*)malloc(sizeof(Node));
assert(NULL != node);
node->data = val;
node->next = NULL;
return node;
}
void push_back(NodeList* list, ElemType val){
Node* p = create_node(val); list->last->next = p;
list->last = p;
list->last->next = list->first;
list->size++;
} void push_front(NodeList* list, ElemType val){
Node* p = create_node(val); p->next = list->first->next;
list->first->next = p;
if(list->size == 0){
list->last = p;
list->last->next = list->first;
}
list->size++;
} void show_list(NodeList* list){
Node* tmp = list->first->next;
while(tmp != list->first){
printf("%d->", tmp->data);
tmp = tmp->next;
}
printf("NULL\n");
} void pop_back(NodeList* list){
if(list->size == 0)return;
Node* p = list->first;
while(p->next != list->last){
p = p->next;
}
p->next = list->first;
free(list->last);
list->last = p;
list->size--;
}
void pop_front(NodeList* list){
if(list->size == 0)return;
Node* p = list->first->next;
list->first->next = p->next;
if(list->size == 1){
list->last = list->first;
}
list->size--;
free(p);
}
void insert_val(NodeList* list, ElemType val){
if(list->size == 0){
push_back(list, val);
return;
}
Node* p = create_node(val); Node* t = list->first;
while(t->next != list->first && val > t->next->data){
t = t->next;
}
if(t->next == list->first){
list->last = p;
}
p->next = t->next;
t->next = p; list->size++;
}
//寻找目标节点
Node* find(NodeList* list, ElemType val){
if(0 == list->size){
return NULL;
}
Node* p = list->first->next;
do{
if(val == p->data){
return p;
}
p = p->next;
}
while(list->first != p);
return NULL;
}
//寻找目标节点的前一个节点
Node* find1(NodeList* list, ElemType val){
if(0 == list->size){
return NULL;
}
Node* p = list->first;
do{
if(p->next->data == val){
return p;
}
p = p->next;
}while(list->first != p);
return NULL;
}
void delete_val(NodeList* list, ElemType val){
if(0 == list->size)return; Node* p = find1(list, val);
if(NULL == p)return;
if(p->next == list->last){
list->last = p;
}
Node* tmp = p->next;
p->next = p->next->next;
free(tmp);
list->size--;
} void sort(NodeList* list){
if(list->size == 0 || list->size == 1)return; Node* p = list->first->next; Node* t = list->last = list->first;
list->last->next = list->first; size_t s = list->size; while(s-- > 0){
while(p->data > t->next->data && t->next != list->first){
t = t->next;
}
if(t->next == list->first){
list->last = p;
} Node* tmp = p->next;
p->next = t->next;
t->next = p; p = tmp;
t = list->first;
}
list->last->next = list->first;
}
void resver(NodeList* list){
if(list->size == 0 || list->size == 1)return; Node* head = list->first->next;
Node* end = head; list->last = list->first;
list->last->next = list->first; while(head != list->first){
Node* tmp = head->next; head->next = list->first->next;
list->first->next = head; head = tmp;
}
list->last = end;
} void clear(NodeList* list){
if(list->size == 0) return;
Node* b = list->first->next;
Node* q;
while(b != list->first){
q = b->next;
free(b);
b = q;
}
list->last = list->first;
list->last->next = list->first;
list->size = 0;
} void destroy(NodeList* list){
Node* b = list->first;
Node* q;
while(b != list->first){
q = b->next;
free(b);
b = q;
}
}

whilenodemain.c

#include "seqnode.h"

int main(){
NodeList list;
init(&list);
int select = 1;
ElemType item;
Node* node = NULL;
while(select){
printf("*****************************************\n");
printf("*** [1] push_back [2] push_front ***\n");
printf("*** [3] show_list [4] pop_back ***\n");
printf("*** [5] pop_front [6] insert_val ***\n");
printf("*** [7] find [8] length ***\n");
printf("*** [9] delete_val [10] sort ***\n");
printf("*** [11] sort [12] resver ***\n");
printf("*** [13] [14] clear ***\n");
printf("*** [0] quit [15*]destroy ***\n");
printf("*****************************************\n");
printf("请选择:>");
scanf("%d", &select);
if(0 == select)
break;
switch(select){
case 1:
printf("请输入要插入的数据,以-1结束>\n");
while(scanf("%d",&item) && item != -1){
push_back(&list, item);
}
show_list(&list);
break;
case 2:
printf("请输入要插入的数据,以-1结束>\n");
while(scanf("%d", &item) && item != -1){
push_front(&list, item);
}
show_list(&list);
break;
case 3:
show_list(&list);
break;
case 4:
pop_back(&list);
show_list(&list);
break;
case 5:
pop_front(&list);
show_list(&list);
break;
case 6:
printf("请输入要插入的数据>\n");
scanf("%d",&item);
insert_val(&list, item);
show_list(&list);
break;
case 7:
printf("please enter what you shoule find out>\n");
scanf("%d",&item);
node = find(&list, item);
if(node == NULL){
printf("can not find %d\n", item);
}
break;
case 8:
printf("length is %ld\n", list.size);
break;
case 9:
printf("please enter what you want to delete>\n");
scanf("%d",&item);
delete_val(&list, item);
show_list(&list);
break;
case 10:
// sort(&list);
//show_list(&list);
break;
case 11:
sort(&list);
show_list(&list);
break;
case 12:
resver(&list);
show_list(&list);
break;
case 13:
resver(&list);
show_list(&list);
break;
case 14:
clear(&list);
show_list(&list);
break;
case 15:
destroy(&list);
break;
default:
break;
}
} destroy(&list);
}

c/c++ 线性表之单向循环链表的更多相关文章

  1. 玩转C线性表和单向链表之Linux双向链表优化

    前言: 这次介绍基本数据结构的线性表和链表,并用C语言进行编写:建议最开始学数据结构时,用C语言:像栈和队列都可以用这两种数据结构来实现. 一.线性表基本介绍 1 概念: 线性表也就是关系户中最简单的 ...

  2. c/c++ 线性表之双向循环链表

    c/c++ 线性表之双向循环链表 线性表之双向循环链表 不是存放在连续的内存空间,链表中的每个节点的next都指向下一个节点,每个节点的before都指向前一个节点,最后一个节点的下一个节点不是NUL ...

  3. c/c++ 线性表之单向链表

    c/c++ 线性表之单向链表 线性表之单向链表 不是存放在连续的内存空间,链表中的每个节点的next都指向下一个节点,最后一个节点的下一个节点是NULL. 真实的第一个节点是头节点,头节点不存放数据, ...

  4. 数据结构C语言实现系列——线性表(单向链表)

    #include <stdio.h> #include <stdlib.h> #define NN 12 #define MM 20 typedef int elemType ...

  5. "《算法导论》之‘线性表’":双向循环链表

    本文双链表介绍部分参考自博文数组.单链表和双链表介绍 以及 双向链表的C/C++/Java实现. 1 双链表介绍 双向链表(双链表)是链表的一种.和单链表一样,双链表也是由节点组成,它的每个数据结点中 ...

  6. 线性表->链式存储->循环链表

    文字描述 循环链表是另一种形式的链式存储结构.它的特点是表中最后一个结点的指针域指向头结点,整个链表形成一个环.由此,从表中任一结点出发均可找到表中其他结点. 示意图 算法分析 插入.删除.查找等同单 ...

  7. 线性表List

    数组array是基本的数据结构,但它的功能有限,线性表list可以认为是扩展了功能的数组.可以自动调整大小.添加和删除元素不需要其他元素移位. 根据指针数量和指向的不同,线性表分为单向链表.双向链表和 ...

  8. 线性表->链式存储->双向链表

    文字描述 之前的链表(单链表.循环链表)的链式存储结构中只有一个指示直接后继的指针域.由此,从某个结点出发只能顺指针往后寻查其他结点.若要寻查结点的直接前驱,则需从表头指针出发.即单链表中,NextE ...

  9. 数据结构(java版)学习笔记(四)——线性表之循环链表

    单向循环链表 PS:有阴影的结点是头结点 概念: 最后一个结点的链域值不为NULL,而是指向头结点 特点: 从表中的任意结点出发,都可以找到表中其他结点 循环条件 p==h 双向链表 概念 链表中的每 ...

随机推荐

  1. OpenCV入门之获取图像的旋转角度

      在我们的日常生活中,所碰到的图像往往都有一定的倾斜.那么,如何用OpenCV来获取图像的旋转角度呢?   我们以下面的图片为例,简单介绍如何用OpenCV来获取图像的旋转角度.   可以看到,该图 ...

  2. C# 获取一定区间的随即数 0、1两个值除随机数以外的取值方法(0、1两个值被取值的概率相等)

    获取随机数 举例:0-9 Random random = new Random(); int j = random.Next(0, 9); 0.1两个值被取值的概率相等 int a = Math.Ab ...

  3. C# MVC 基于From的身份验证

    前言 昨天和一个技术比较好的前辈聊了聊,发现有的时候自己的学习方式有些问题,不知道有没有和我一样的越学习越感觉到知识的匮乏不过能认识到这个问题的同学们,也不要太心急路是一步一步走的饭是一口一口吃的认识 ...

  4. Python网络编程Socket之协程

    一.服务端 __author__ = "Jent Zhang" import socket import gevent from gevent import monkey monk ...

  5. 如何理解php的依赖注入

    之前写过关于php依赖注入的文章..最近发现有的朋友对这个还是理解模糊,在这里我想写个简单的实例帮助朋友们理解下...传统的思路是应用程序用到一个A类,就会创建A类并调用A类的方法,假如这个方法内需要 ...

  6. JavaScript定时器实现的原理分析

    原文链接:http://www.cnblogs.com/st-leslie/p/6082450.html 一.储备知识 在我们在项目中一般会遇见过这样的两种定时器,第一种是setTimeOut,第二种 ...

  7. 快速掌握JavaScript面试基础知识(二)

    译者按: 总结了大量JavaScript基本知识点,很有用! 原文: The Definitive JavaScript Handbook for your next developer interv ...

  8. 12个必备的JavaScript装逼技巧

    译者按: 无论你是初学者还是资深人士,都值得一读! 原文: 12 Amazing JavaScript Shorthand Techniques 译者: Fundebug 为了保证可读性,本文采用意译 ...

  9. Angular的12个经典问题,看看你能答对几个?(文末附带Angular测试)

    Angular作为目前最为流行的前端框架,受到了前端开发者的普遍欢迎.不论是初学Angular的新手,还是有一定Angular开发经验的开发者,了解本文中的12个经典面试问题,都将会是一个深入了解和学 ...

  10. Linux swappiness参数设置与内存交换

    swappiness参数设置与内存交换 by:授客 QQ:1033553122 简介 swappiness,Linux内核参数,控制换出运行时内存的相对权重.swappiness参数值可设置范围在0到 ...