「ZJOI2018」历史(LCT)
「ZJOI2018」历史(LCT)
\(ZJOI\) 也就数据结构可做了……
题意:给定每个点 \(access\) 次数,使轻重链切换次数最大,带修改。
\(30pts:\)
挺好想的。发现切换次数只跟子树中所有结点的 \(access\) 次数,可以树形 \(dp\)。假设 \(x\) 有 \(m\) 个儿子,每个儿子的 \(access\) 次数为 \(A_i\),自己为 \(A_0\),问题转换成有 \(m+1\) 种颜色,问怎么使颜色不同的间隔最多。使 \(sum=\sum_{i=0}^{m}A_i,val=\max_{i=0}^{m}A_i\),那么答案为 \(\min(sum-1,2\times (sum-val))\)
那么我们把 \(\min\) 拆开,当 \(2\times val>sum\) 时,\(2\times (sum-val)\) 更小,否则 \(sum-1\) 更小。
然后就可以 \(O(n)\) 预处理了。
\(100pts:\)
考虑怎么带修改。
我们暴力跳肯定不行,那可以用 \(LCT\) 模拟这个暴力跳的过程。时间复杂度 \(O(n\log n)\)
\(Code\ below:\)
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=400000+10;
int n,m,son[maxn],op[maxn];
int ch[maxn][2],fa[maxn];ll w[maxn],sum[maxn],siz[maxn],ans;
int head[maxn],to[maxn<<1],nxt[maxn<<1],tot;
inline int read(){
register int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return (f==1)?x:-x;
}
void print(ll x){
if(x<0){putchar('-');x=-x;}
if(x>9) print(x/10);
putchar(x%10+'0');
}
inline void pushup(int x){
sum[x]=sum[ch[x][0]]+sum[ch[x][1]]+siz[x]+w[x];
}
inline bool nrt(int x){
return ch[fa[x]][0]==x||ch[fa[x]][1]==x;
}
inline void rotate(int x){
int y=fa[x],z=fa[y],k=(ch[y][1]==x),u=ch[x][k^1];
if(nrt(y)) ch[z][ch[z][1]==y]=x;
ch[y][k]=u;ch[x][k^1]=y;
if(u) fa[u]=y;fa[y]=x;fa[x]=z;
pushup(y);pushup(x);
}
inline void splay(int x){
int y,z;
while(nrt(x)){
y=fa[x],z=fa[y];
if(nrt(y)) rotate((ch[y][1]==x)^(ch[z][1]==y)?x:y);
rotate(x);
}
}
inline void addedge(int x,int y){
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int x,int f){
fa[x]=f;
ll maxson=-1;
for(int i=head[x],y;i;i=nxt[i]){
y=to[i];
if(y==f) continue;
dfs(y,x);siz[x]+=sum[y];
if(sum[y]>maxson) maxson=sum[y],son[x]=y;
}
sum[x]=siz[x]+w[x];
if((maxson<<1)>sum[x]){
op[x]=0;ans+=(sum[x]-maxson)<<1;
ch[x][1]=son[x];siz[x]-=maxson;
}
else if((w[x]<<1)>sum[x]) op[x]=1,ans+=(sum[x]-w[x])<<1;
else op[x]=2,ans+=sum[x]-1;
}
inline void modify(int x,int z){
ll S;
for(int y=0;x;y=x,x=fa[x]){
splay(x);S=sum[x]-sum[ch[x][0]];
ans-=(op[x]<2)?(S-(op[x]?w[x]:sum[ch[x][1]]))<<1:S-1;
S+=z;sum[x]+=z;y?siz[x]+=z:w[x]+=z;
if((sum[y]<<1)>S) siz[x]+=sum[ch[x][1]]-sum[y],ch[x][1]=y;
if((sum[ch[x][1]]<<1)>S) op[x]=0,ans+=(S-sum[ch[x][1]])<<1;
else {
if(ch[x][1]) siz[x]+=sum[ch[x][1]],ch[x][1]=0;
if((w[x]<<1)>S) op[x]=1,ans+=(S-w[x])<<1;
else op[x]=2,ans+=S-1;
}
}
}
int main()
{
n=read(),m=read();
int x,y;
for(int i=1;i<=n;i++) w[i]=read();
for(int i=1;i<n;i++){
x=read(),y=read();
addedge(x,y),addedge(y,x);
}
dfs(1,0);
print(ans),putchar('\n');
for(int i=1;i<=m;i++){
x=read(),y=read();modify(x,y);
print(ans),putchar('\n');
}
return 0;
}
「ZJOI2018」历史(LCT)的更多相关文章
- LOJ2434. 「ZJOI2018」历史 [LCT]
LOJ 思路 第一眼看似乎没有什么思路,试着套个DP上去:设\(dp_x\)表示只考虑\(x\)子树,能得到的最大答案. 合并的时候发现只有\(x\)这个点有可能做出新的贡献,而做出新贡献的时候必然是 ...
- 「ZJOI2018」历史
「ZJOI2018」历史 前置知识 \(\text{LCT}\) 维护子树信息,考虑辅助树上一个节点的子树信息只是其代表的这一段链的信息,设 \(S(u)\) 为节点 \(u\) 的子树信息,那么在辅 ...
- LOJ #2434. 「ZJOI2018」历史(LCT)
题意 click here 题解 我们首先考虑答案是个什么样的东西, 不难 发现每个点可以单独计算它的贡献. 令每个点 \(i\) 崛起次数为 \(a_i\) . 假设一个点子树的 \(\sum a_ ...
- @loj - 2434@ 「ZJOI2018」历史
目录 @description@ @solution@ @accepted code@ @details@ @description@ 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的 ...
- 题解 「ZJOI2018」历史
题目传送门 Description 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 \(n\) 个城市,这 \(n\) 个城市被恰 ...
- 「ZJOI2018」胖(ST表+二分)
「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每 ...
- Loj #2529. 「ZJOI2018」胖
Loj #2529. 「ZJOI2018」胖 题目描述 Cedyks 是九条可怜的好朋友(可能这场比赛公开以后就不是了),也是这题的主人公. Cedyks 是一个富有的男孩子.他住在著名的 The P ...
- 「TJOI2015」旅游 解题报告
「TJOI2015」旅游 LCT沙比题 考虑我们其实是在维护一条链的\(\max\limits_{i<j} v_j-v_i\) 每次直接拿左右子树更新一下就可以了 写的时候把两个方向都维护一下, ...
- 「数据结构」Link-Cut Tree(LCT)
#1.0 简述 #1.1 动态树问题 维护一个森林,支持删除某条边,加入某条边,并保证加边.删边之后仍然是森林.我们需要维护这个森林的一些信息. 一般的操作有两点连通性,两点路径权值和等等. #1.2 ...
随机推荐
- docker image 详解
docker iamge docker 镜像: [root@localhost ~]# docker image --help Usage: docker image COMMAND 管理镜像 Com ...
- why?
优点 充分利用多核CPU的计算能力: 方便进行业务拆分,提升应用性能 缺点 上下文切换 注意线程安全,避免死锁
- golang 安装tensorflow
TF_TYPE="cpu" # Change to "gpu" for GPU support //设置环境变量 TARGET_DIRECTORY='/u ...
- 《剑指Offer》第20题(Java实现):定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1))。
一.题目描述 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1)). 二.思路解析 首先定义一个Integer类型的栈,记为stack,此栈用来完成数据 ...
- 自学elastic search
工作也有一段时间了,虽然来这个公司之后学会了几门不同的语言,但想拨尖还是任重道远. 想往高级程序员甚至是架构师方向发展.他仍然是我的学习对象.我现在做着的,无非是他玩剩下的罢了. luncene之前有 ...
- Python3 单下划线_双下划线__开头
Python 中,下划线对解释器有特殊的含义,而且是内建标识符所使用的符号,使用时要多加留意. 在 Python3 的面向对象中,双下划线开头的变量和方法表名为私有变量和私有方法. __private ...
- centos6.6安装Elasticsearch
1. 安装jar8 yum list java-1.8* sudo yum install java-1.8.0-openjdk* -y java --version 2. 安装elasticsear ...
- 地磁应用中的低功耗无线数传模块xbee PRO S2C
地球上每一个地理坐标点,在一段时间内磁场强度是恒定的,当车辆这种铁磁物质经过这个点时,对这个点的磁场强度产生一个连续的扰动,通过磁传感器采样数据与初始采样数据(该点的地球磁场值)进行对比,其差值为车辆 ...
- C语言内存四区的学习总结(三)---- 栈区
接上篇内存四区的堆区的总结,下面做一些栈区的相关总结. 一.栈区的分析: 就下面测试程序 #include "stdio.h" #include "string.h&qu ...
- java -version显示版本和JAvA_HOME配置不一样
当你需要安装多个版本的jdk时,可能会遇到更改了JAVA_HOME后java -version不变的情况. 一般情况下,将你的JAVA_HOME改为你要用的jdk的安装路径,然后你使用的就是这个版本的 ...