题目链接:Queuing

题意:有一支$2^L$长度的队伍,队伍中有female和male,求$2^L$长度的队伍中除 fmf 和 fff 的队列有多少。

题解:先推导递推式:$f[i]=f[i-1]+f[i-3]+f[i-4]$

当前为f:

前一个为f(ff),那么再前一个只能为m(mff),再前一个也只能为m(mmff),即从$f[i-4]$转移过来;

前一个为m(mf),那么再前一个只能为m(mmf),即从$f[i-3]$转移过来。

当前为m:

前一个为m和f均可,即从$f[i-1]$转移过来。

推导出来啦。构造下矩阵就可以啦。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 4
using namespace std; typedef long long ll; struct mat
{
ll m[N][N]=
{
{,,,},
{,,,},
{,,,},
{,,,},
};
}; mat mul(mat a,mat b,ll p)
{
mat ans;
int i,j,k;
for(i=;i<N;i++)
for(j=;j<N;j++)
ans.m[i][j]=; for(i=;i<N;i++)
for(j=;j<N;j++)
for(k=;k<N;k++)
ans.m[i][j]=(ans.m[i][j]+a.m[i][k]*b.m[k][j])%p;
return ans;
} ll matpow(ll n,ll p)
{
mat ans,tmp;
int i,j;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
ans.m[i][j]=; ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;
n-=;
while(n)
{
if(n&) ans=mul(ans,tmp,p);
tmp=mul(tmp,tmp,p);
n=n>>;
}
return ans.m[][]%p;
} int main(){
ll L,M;
while(scanf("%lld%lld",&L,&M)!=EOF){
if(L==){
printf("%lld\n",%M);
continue;
}
else if(L==){
printf("%lld\n",%M);
continue;
}
else if(L==){
printf("%lld\n",%M);
continue;
}
else if(L==){
printf("%lld\n",%M);
continue;
}
printf("%lld\n",matpow(L,M));
}
return ;
}

HDU 2604 Queuing(矩阵快速幂)的更多相关文章

  1. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  2. HDU 2604 Queuing 矩阵高速幂

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  4. HDU 6185 Covering 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...

  5. HDU 2157(矩阵快速幂)题解

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 6395 分段矩阵快速幂 HDU 6386 建虚点+dij

    http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others)    Me ...

  7. HDU 6470 【矩阵快速幂】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 写这道题是为了让自己不要忘记矩阵快速幂如何推出矩阵式子的. 注意 代码是TLE的!! #incl ...

  8. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  9. HDU 1575(裸矩阵快速幂)

    emmmmm..就是矩阵快速幂,直接附代码: #include <cstdio> using namespace std; ; ; struct Matrix { int m[maxn][ ...

  10. hdu 6395Sequence【矩阵快速幂】【分块】

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total ...

随机推荐

  1. vue传参

    <template> <ul> <li v-for="item in list" :key="item.id"> <b ...

  2. Sqlserver tablediff的简单使用

    1. 先列举一下自己简单的比较语句 tablediff -sourceserver 10.24.160.73 -sourcedatabase cwbasemi70 -sourceschema lcmi ...

  3. JSON Support in PostgreSQL and Entity Framework

    JSON 和JSONB的区别(What's difference between JSON and JSONB data type in PosgresSQL?) When should be use ...

  4. python之路--操作系统介绍,进程的创建

    一 .  操作系统的作用: 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口 2:管理.调度进程,并且将多个进程对硬件的竞争变得有序 二 多道技术: 所谓多道程序设计技术,就是指允许多个程序同时进入内存 ...

  5. python学习笔记(12)--程序设计方法学

    计算思维: 逻辑思维:推演和演绎 实证思维:实验和验证,引力波->实验 计算思维:设计和构造,计算机为代表,汉诺塔递归. 计算思维特征 抽象和自动化,抽象问题的计算过程,利用计算机自动化求解. ...

  6. django学习自修第一天【简介】

    1. MVC框架 MVC框架的核心思想是解耦,降低各功能之间的耦合性,方便重构代码 (1)低耦合,高内聚 (2)高可扩展性 (3)向后兼容 2. MVT框架 V(视图):核心处理,接受请求,调用模型获 ...

  7. delphi中adoquery控件中某个字段Onvalidate事件的用法?

    procedure TForm2.ADOQuery1TestFieldValidate(Sender: TField);begin// Sender就是当前字段,可以在这里对Sender字段进行各种操 ...

  8. Lodop打印维护PRINT_SETUP本地缓存ini文件

    针对千差万别的客户端,Lodop提供了打印维护(PRINT_SETUP),可以针对某个客户端微调,调整结果保存在客户端本地,不会影响其他访问网站的用户的使用. 打印维护使用方法:1.PRINT_INI ...

  9. Js 常用字符串操作 API

    常用的一些字符串操作 API 整理 1.str.charAt(index).str.charCodeAt(index) - 返回指定位置的字符 / 字符编码(0~65535) index - 必须,表 ...

  10. css 引用自定义图标

    1.进入阿里图标库搜索需要的图标(搜索“图标"是全部的) 2.选择需要的图标 下载 下载svg 格式 进入https://icomoon.io/     css引用库 解压下载的压缩包 ok ...