「洛谷P1516」 青蛙的约会
出处:?
主要算法:数论
难度:4.4
思路分析:
典型的同余方程。由于是纬线,绕一圈是可以绕回来的,所以是可以取模的。
阅读题目,很容易得到同余方程$ x + tm ≡ y + tn (mod\ L)$
于是我们可以通过Exgcd来求解。先转化为不定方程 $ x + tm - y - tn = sL $
整理得 $ (m - n)t - Ls = y - x $
设 $a = n - m, b = L, c = x - y$,代入可得 $ -at - bs = -c $,即 $ at + bs = c $
因此通过先求解 $ at + bs = gcd(a, b) $,最后就能够解得一组特解了。转化成最小正整数解即可。
然而要处理的事情还有很多。首先我们来想如何得到最小正整数解。
设答案为$x$,我们得到的特解为$x_0$,则根据我们的公式一定有 $ x_0 = x + k * b / gcd(a, b) $。我们可以把它看做出发的形式,即$ x = x_0 \% (b / gcd(a, b)) $。
因此我们的答案就是$ x \% (b / gcd(a, b)) $ …… ? 万一$x \leq 0$?我们的答案应该是 $ (x + (b / gcd(a, b)) \% (b / gcd(a, b) $,防止爆负数。
但是考虑一下$ b/gcd(a,b) 与 a, b$的符号,若$a, b$同号那没事,如果$a, b$异号且$ a < 0, b > 0$,那么情况就有点麻烦了……… $ gcd(a, b) $肯定小于0,而$b > 0$,所以 $ b / gcd(a, b) $ 一定小于0,因此按照这样的做法,答案不仅无法变成最小正整数解,反而更小了……
有没有一种方法来避免$ a < 0, b > 0$这种情况呢?
考虑可不可以永远保持$a$为正数。
$ax + by = c$ 与 $-ax + by = -c$的解是否完全一样?
乍一眼看不出来,可以转化为同余方程的形式,那么前者就能够变成$ c ≡ ax (mod\ b) $,后者就能够变成$ ax ≡ c (mod\ b) $。看来是完全一样的。
因此当$a < 0$时,$a$和$c$转换成相反数就可以了。
代码注意点:
long long
Code
/*By QiXingzhi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
#define int ll
const int N = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
int x,y,m,n,L,s,t,a,b,c,g;
int gcd(int a, int b){
return b==?a:gcd(b,a%b);
}
void exgcd(int a, int b){
if(b == ){
t = ;
s = ;
return;
}
exgcd(b,a%b);
int tmp = t;
t = s;
s = tmp - a/b * s;
}
#undef int
int main(){
#define int ll
//freopen(".in","r",stdin);
x = r, y = r, m = r, n = r, L = r;
a = n - m;
b = L;
c = x - y;
if(a < ){
a = -a;
c = -c;
}
g = gcd(a,b);
exgcd(a,b);
t *= c / g;
s *= c / g;
if(c % g != ){
printf("Impossible");
return ;
}
printf("%lld",(t + (b/g)) % (b/g));
return ;
}
「洛谷P1516」 青蛙的约会的更多相关文章
- 【洛谷P1516】青蛙的约会
题目大意:给定 \(a,b,c\),求线性同余方程 \(ax+by=c\) 的最小正整数解. 题解:首先判断方程是否有解,若 c 不能整出 a 与 b 的最大公约数,则无解.若有解,则利用扩展欧几里得 ...
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...
- 「洛谷3870」「TJOI2009」开关【线段树】
题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. ...
- 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】
题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...
- 「洛谷3469」「POI2008」BLO-Blockade【Tarjan求割点】
题目链接 [洛谷传送门] 题解 很显然,当这个点不是割点的时候,答案是\(2*(n-1)\) 如果这个点是割点,那么答案就是两两被分开的联通分量之间求组合数. 代码 #include <bits ...
- 「洛谷1884」「USACO12FEB」过度种植【离散化扫描线】
题目链接 [洛谷传送门] 题解 矩阵面积的并模板.(请求洛谷加为模板题) 很明显是要离散化的. 我们将矩阵与\(x\)轴平行的两个线段取出来.并且将这两个端点的\(x1\)和\(x2\)进行离散化. ...
随机推荐
- pycharm 常用快捷键操作
#最重要的快捷键 1. ctrl+shift+A:万能命令行 2. shift两次:查看资源文件 #新建工程第一步操作 1. module设置把空包分层去掉,compact empty middle ...
- sql存储过程中使用 output、nvarchar(max)
1.sql存储过程中使用 output CREATE PROCEDURE [dbo].[P_Max] @a int, -- 输入 @b int, -- 输入 @Returnc int output - ...
- c#中用sql存储过程
string connstr = ConfigurationManager.ConnectionStrings["ConnectionString"].ConnectionStri ...
- p86商空间也是Banach空间
1.为什么要引入Zk? 2.为什么这个等式成立,和为什么要引入uk? 3.为什么为什么等于0? 属于M,则商空间是0元,p128最上面的第二个笔记
- CRM系统(第一部分)
阅读目录 1.需求分析 2.数据库表设计 3.起步 4.录入数据 5.知识点 1.需求分析 CRM客户关系管理软件---> 学员管理 用户:企业内部用户 用户量: 业务场景: 2.数据库表设 ...
- Ubuntu Linux Recovery Mode
在安全模式/修復模式有以下的選項︰resume Resume normal boot繼續正常啟動作業,供不小心誤入此選單的使用者開機使用.(继续以正常模式启动) clean Try to make f ...
- Linux查看硬件等基本参数
http://www.cnblogs.com/xd502djj/archive/2011/02/28/1967350.html
- C#的类型推断发展史
前言:随着C#的版本升级,C#编译器的类型推断功能也在不断的升级以适应语言进化过程中的变化,并为这个过程做了相应的优化. 隐式类型的数组 在C#1和C#2中,作为变量声明和初始化的一部分,初始化数组的 ...
- 转:MD5(Message-Digest Algorithm 一种哈希算法)
什么是MD5算法 MD5讯息摘要演算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码杂凑函数,可以产生出一个128位元(16位元组)的散列值(hash val ...
- [转帖]KMS 是什么 以及 优缺点
产品激活 比如Windows激活 , office激活 等激活的原理是什么? KMS等激活工具安全吗? http://www.cnblogs.com/flowerslip/p/8370832.html ...