一个编译器之谜:我们被给了一段C++语言风格的循环

for(int i=A;i!=B;i+=C)

内容;

其中所有数都是k位二进制数,即所有数时膜2^k意义下的。我们的目标时球出 内容 被执行了多少次。

Input

输入包含若干组。每组被描述为一个单身的行有四个正整数 A, B, C, k 被一个单身的空格分开。输入以0 0 0 0结束。1 <= k <= 32, 0 <= A, B, C < 2 k

Output

输出包含若干行表示每组数据的答案,若该循环不会停止则输出一行"FOREVER"(不包含引号)。 

Sample Input

1 3 2 4
1 5 2 4
1 2 4 3
0 0 0 0

Sample Output

1
2
FOREVER 这和青蛙的那个题是一样的 想象成跑圈
写出式子 就可以了
注意最后对x的处理
ax + by = c
最后 b /= d;
x = (x % b + b) % b;
输出x即可
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; LL gcd(LL a, LL b)
{
return b == ? a : gcd(b, a % b);
} LL exgcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
} int main()
{
LL a, b, c, k, x, y, d;
while(cin >> a >> b >> c >> k)
{
if(a == && b == && c == && k == )
break;
LL s = 1LL << k;
if((b - a) % gcd(c, s))
{
cout << "FOREVER" << endl;
continue;
}
exgcd(c, s, d, x, y);
s /= d;
x *= (b - a) / d;
x = (x % s + s) % s;
cout << x << endl;
} return ;
}

C Looooops POJ - 2115 (exgcd)的更多相关文章

  1. B - C Looooops POJ - 2115 (扩展欧几里得)

    题目链接:https://cn.vjudge.net/contest/276376#problem/B 题目大意:for( int  i= A ; i != B; i+ = c ),然后给你A,B,C ...

  2. 青蛙的约会 POJ - 1061 (exgcd)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  3. 扩展欧几里得算法(EXGCD)学习笔记

    0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézo ...

  4. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

  5. C Looooops POJ - 2115 拓展gcd 有一个定理待补()

    补算法导论P564 MODULAR-LINEAR-EQUATION-SOLVER算法(P564)

  6. POJ题目(转)

    http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法:     (1)枚举. (poj1753,poj29 ...

  7. E - The Balance POJ - 2142 (欧几里德)

    题意:有两种砝码m1, m2和一个物体G,m1的个数x1,  m2的个数为x2, 问令x1+x2最小,并且将天平保持平衡 !输出  x1 和 x2 题解:这是欧几里德拓展的一个应用,欧几里德求不定方程 ...

  8. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  9. Repeater POJ - 3768 (分形)

    Repeater POJ - 3768 Harmony is indispensible in our daily life and no one can live without it----may ...

随机推荐

  1. vue报错信息

    1.Property or method "xxx" is not defined on the instance but referenced during render. 原因 ...

  2. SQL Server(2000,2005,2008):恢复/回滚时间比预期长(译)

    我已经讨论了各种确定恢复状态的方法,但是本周我参与了一个围绕回滚的有趣讨论.交易已经运行了14个小时,然后发出了KILL SPID.SPID进入回滚,并发生2天和4小时. 自然的问题是为什么不14小时 ...

  3. Dijkstra的应用

    每次只涉及一边两端点的极值循环转移应用Dijkstra.

  4. 03-HTML之body标签

    body标签 HTML标签按作用主要分为两类:字体标签和排版标签 HTML标签按级别主要分为两类:文本级标签和容器级标签 文本级标签:p.span.a.b.i.u.em.文本标签里只能放文字.图片.表 ...

  5. MyBatis模糊查询不报错但查不出数据的一种解决方案

    今天在用MyBatis写一个模糊查询的时候,程序没有报错,但查不出来数据,随即做了一个测试,部分代码如下: @Test public void findByNameTest() throws IOEx ...

  6. dynamo与cassandra区别

    虽说cassandra是dynamo的开源版本,但两者还是有很大区别的. coordinator的选取: 在dynamo论文中,一般是preference list中N个副本的第一个 为什么叫“一般” ...

  7. nodejs 中的一些方法

    fs.unlink(path, [callback(err)]) //删除文件操作. //path 文件路径 //callback 回调,传递一个异常参数err. ndoe中解决跨域问题 expres ...

  8. js数据放入缓存,需要再调用

    再贴代码之前先描述下,这个技术应用的场景:一个页面的http请求次数能少点就少,这样大大提高用户体验.所以再一个页面发起一个请求,把所有数据都拿到后储存在缓存里面,你想用的时候再调用出来,这个是非常好 ...

  9. Linux中各个目录作用

    对于linux新手来说,最感到迷惑的问题之一就是文件都存在哪里呢?特别是对于那些从windows转过来的新手来说,linux的目录结构看起来有些奇怪哦.比如没有C盘,没有分盘符,一大堆不知道用途的文件 ...

  10. Programming好文解读系列(—)——代码整洁之道

    注:初入职场,作为一个程序员,要融入项目组的编程风格,渐渐地觉得系统地研究下如何写出整洁而高效的代码还是很有必要的.与在学校时写代码的情况不同,实现某个功能是不难的,需要下功夫的地方在于如何做一些防御 ...