BZOJ3812 主旋律(状压dp+容斥原理)
设f[S]为S点集是SCC的方案数。考虑通过去掉不合法方案转移。可以枚举入度为0的SCC所含点集S',这样显然S^S'内部的边和由S'连向S^S'的边删还是不删任选。但是这样无法保证S'包含所有入度为0的SCC,于是考虑容斥,瞎猜可以得到容斥系数与SCC数量有关,于是设g[i][S]为S包含i个无关SCC的方案数,转移有f[S]=2cnt(S)-Σ(-1)j*g[j][S']*2cnt(S^S')+cnt(S' to S^S'),g的转移通过枚举编号最小点所在SCC实现。注意到g[j][]的贡献只与j的奇偶性有关,于是可以改成g[S]为S有偶数个无关SCC的方案数,h[S]为S有奇数个无关SCC的方案数,转移类似。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 15
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[N][N],e[1<<N],s[N][1<<N],p[N*N*N],f[1<<N],g[1<<N],h[1<<N];
int trans(int x)
{
int s=-1;
while (x) s++,x>>=1;
return s;
}
int calc(int x,int y)
{
int u=0;
for (int i=0;i<n;i++)
if (x&(1<<i)) u+=s[i][y];
return u;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=1;i<=m;i++)
{
int x=read()-1,y=read()-1;
a[x][y]=1;
}
for (int i=0;i<(1<<n);i++)
for (int x=0;x<n;x++)
if (i&(1<<x))
for (int y=0;y<n;y++)
if (i&(1<<y)) e[i]+=a[x][y];
for (int i=0;i<n;i++)
for (int j=1;j<(1<<n);j++)
s[i][j]=s[i][j^(j&-j)]+a[i][trans(j&-j)];
p[0]=1;for (int i=1;i<=m;i++) p[i]=(p[i-1]<<1)%P;
for (int i=1;i<(1<<n);i++)
{
f[i]=p[e[i]];
int x=0;
for (int j=0;j<n;j++) if (i&(1<<j)) {x=j;break;}
for (int j=i-1&i;j;j=j-1&i)
if (j&(1<<x))
{
g[i]=(g[i]+1ll*h[i^j]*f[j])%P;
h[i]=(h[i]+1ll*g[i^j]*f[j])%P;
}
for (int j=i;j;j=j-1&i)
f[i]=(f[i]+1ll*(g[j]+P-h[j])*p[e[i^j]+calc(j,i^j)]%P)%P;
h[i]=(h[i]+f[i])%P;
}
cout<<f[(1<<n)-1];
return 0;
}
BZOJ3812 主旋律(状压dp+容斥原理)的更多相关文章
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- 【bzoj2560】串珠子 状压dp+容斥原理
题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- 4455: [Zjoi2016]小星星|状压DP|容斥原理
OrzSDOIR1ak的晨神 能够考虑状压DP枚举子集,求出仅仅保证连通性不保证一一相应的状态下的方案数,然后容斥一下就是终于的答案 #include<algorithm> #includ ...
- 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 667 Solved: 350 Description 有一 ...
- [BZOJ3812]主旋律:状压DP+容斥原理
分析 Miskcoo orz 令\(f[S]\)表示使得\(S\)这个点集强连通的方案数. 然后呢?不会了 考虑到将一个有向图SCC缩点后,得到的新图是一个DAG,所以我们可以类比带标号DAG计数的解 ...
- HDU5838 Mountain(状压DP + 容斥原理)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...
- 【BZOJ-2669】局部极小值 状压DP + 容斥原理
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 561 Solved: 293[Submit][Status ...
- BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...
随机推荐
- 微软Azure AspNetCore微服务实战第1期【补充2017-09-09活动】
2017年09月09日,冒着酷暑,我们在(上海徐汇)虹桥路3号港汇中心2座10层组织了一次微软Azure AspNetCore微服务实战活动. 由于前期工作繁忙,活动完成之后,没能及时发布相关信息,特 ...
- RabbitMQ教程(二) ——linux下安装rabbitmq
安装过程参考官网: Installing on RPM-based Linux (RHEL, CentOS, Fedora, openSUSE) 首先需要安装erlang,参考:http://fedo ...
- Logstash filter 的使用
原文地址:http://techlog.cn/article/list/10182917 概述 logstash 之所以强大和流行,与其丰富的过滤器插件是分不开的 过滤器提供的并不单单是过滤的功能,还 ...
- 爬虫(三)之scrapy核心组件
01-核心组件 ·五大核心组件的工作流程: 引擎(Scrapy) 用来处理整个系统的数据流处理, 触发事务(框架核心) 调度器(Scheduler) 用来接受引擎发过来的请求, 压入队列中, 并在引擎 ...
- Linux 命令(二)
man help:线上查询及帮助命令 命令 --help:简单帮助 help cd:查看一些Linux命令行的一些内置命令 文件和目操作命令(19个) ls cd cp find mkdi ...
- 第十五次oo作业
作业十五 测试与正确性论证的效果差异 程序的测试需要通过输入特定数据等方式,检查程序是否和预期相同,因为测试不可能穷举,导致了不穷举的测试不可能验证程序是完全正确的,只能验证程序在测试时没有发生错误, ...
- Verilog语法遗漏点
1 关于参数定义 Parameter:parameter只能定义在端口生命的前面,如 Input[whith:0] a; Parameter whith=4; 这样的参数定义出现在声明的后面会报错 2 ...
- 出题人的女装(牛客练习赛38题B) (概率+分式运算)
链接:https://ac.nowcoder.com/acm/contest/358/B来源:牛客网 出题人的女装 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他 ...
- RabbitMQ 安装与使用
RabbitMQ 安装与使用 前言 吃多了拉就是队列,吃饱了吐就是栈 使用场景 对操作的实时性要求不高,而需要执行的任务极为耗时:(发送短信,邮件提醒,更新文章阅读计数,记录用户操作日志) 存在异 ...
- Python之字符串格式化
1) 占位符%s: %s是通用的占位符,所有类型不管是string还是int还是float全都代表. 如果使用%d,则只能代表整数:如果是%f,则只能代表小数: 2) 直接用加号+连接 ...