Problem Description

There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So at first he must know the minimal required length of the rope. However, he does not know how to calculate it. Can you help him?

The diameter and length of the trees are omitted, which means a tree can be seen as a point. The thickness of the rope is also omitted which means a rope can be seen as a line.

There are no more than 100 trees.

Input

The input contains one or more data sets. At first line of each input data set is number of trees in this data set, it is followed by series of coordinates of the trees. Each coordinate is a positive integer pair, and each integer is less than 32767. Each pair is separated by blank.

Zero at line for number of trees terminates the input for your program.

Output

The minimal length of the rope. The precision should be 10^-2.

Sample Input

9
12 7
24 9
30 5
41 9
80 7
50 87
22 9
45 1
50 7
0

Sample Output

243.06

Source

Asia 1997, Shanghai (Mainland China)


思路

这就是找最小凸包并求其周长的过程,可以采用Graham算法,具体步骤如下:

  • 读入一系列坐标并找到y坐标最小的坐标设置为\(p_0\)(如果x坐标相同就找x最小的)
  • 对除了\(p_0\)以外的点按照逆时针以相对p0的极角排序,相同极角的点则保留一个离\(p_0\)最远的点
  • 设置一个栈,前三个候选点先入栈,接下来让剩下的点一一入栈,去掉所有非左转的情况,由此,栈里的点就是凸包的点

具体看注释

代码

#include<bits/stdc++.h>
using namespace std;
struct point
{
double x,y;
}a[110]; double dis(point a,point b)
{
return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) );
} double crossMult(point a, point n1, point n2)
{
return (n1.x-a.x)*(n2.y-a.y) - (n1.y-a.y)*(n2.x-a.x);
} //叉积,以a为基 bool cmp(point n1, point n2)
{
double k = crossMult(a[1],n1,n2); //叉积
if( k>0 ) return true; //叉积>0则说明a在b的顺时针方向上
else
{
if( k==0 && dis(a[1],n1) < dis(a[1],n2) ) //叉积为0说明a和b在同一条直线上,且更远
return true;
}
return false;
} void sortByAngel(int n)
{
point tmp;
int k = 1;
for(int i=2; i<=n; i++)
{
if( a[i].y < a[k].y || a[i].y == a[k].y && a[i].x < a[k].x)
k = i;
} //找出p0
tmp = a[1];
a[1] = a[k];
a[k] = tmp;
sort(a+2, a+n+1,cmp); //对除了p0以外的点逆时针以相对p0的极角进行排序
} double Graham(int n)
{
sortByAngel(n) ;
point stack[110];
double sum = 0.0;
a[n+1] = a[1];
stack[1] = a[1]; stack[2] = a[2]; stack[3] = a[3];
int top = 3;//指向栈顶
for(int i=4;i<=n+1;i++) //这里是遍历到n+1,因为要回到最初的点
{
while( (crossMult(stack[top-1], stack[top], a[i])<=0) &&
top >= 3) top--; //保证是左转而且栈里面至少要有2个点(后面才能做叉积)
top++;
stack[top] = a[i];
}
for(int i=1;i<top;i++)//这里i<top即可,因为后面要访问的是stack[i],stack[i+1]
{
sum += dis(stack[i],stack[i+1]);
}
return sum;
} int main()
{
int n;
while(cin>>n)
{
if(0==n) break;
for(int i=1;i<=n;i++)
cin >> a[i].x >> a[i].y; if(1==n)
cout << "0.00" << endl;
else if(2==n)
printf("%.2lf\n",dis(a[1],a[2]));
else
{
double ans = Graham(n);
printf("%.2lf\n",ans);
}
}
return 0;
}

Hdoj 1392.Surround the Trees 题解的更多相关文章

  1. HDU 1392 Surround the Trees(凸包入门)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  2. HDU - 1392 Surround the Trees (凸包)

    Surround the Trees:http://acm.hdu.edu.cn/showproblem.php?pid=1392 题意: 在给定点中找到凸包,计算这个凸包的周长. 思路: 这道题找出 ...

  3. hdu 1392 Surround the Trees 凸包裸题

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. hdu 1392 Surround the Trees 凸包模板

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDUJ 1392 Surround the Trees 凸包

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  6. hdu 1392:Surround the Trees(计算几何,求凸包周长)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. hdu 1392 Surround the Trees (凸包)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. 题解报告:hdu 1392 Surround the Trees(凸包入门)

    Problem Description There are a lot of trees in an area. A peasant wants to buy a rope to surround a ...

  9. HDU 1392 Surround the Trees(凸包)题解

    题意:给一堆二维的点,问你最少用多少距离能把这些点都围起来 思路: 凸包: 我们先找到所有点中最左下角的点p1,这个点绝对在凸包上.接下来对剩余点按照相对p1的角度升序排序,角度一样按距离升序排序.因 ...

随机推荐

  1. Python之拆分目录

    成分目录的好习惯,使得代码保持整洁,为以后的代码管理提供方便. 一.概念 一般目录有以下几个: bin:程序入口,存放start文件. conf:存放固定的配置信息,比如:连接redis的配置信息.连 ...

  2. 提高工作效率-window热键

    一.虚拟桌面 Ctrl win D          创建另一个桌面 Ctrl win  左右箭头     来回切换桌面 Ctrl win  F4     关闭当前虚拟桌面 二.窗口 win  M  ...

  3. Linux下设置MySql自动启动

    https://www.cnblogs.com/sunny3096/p/7954146.html

  4. 【Python3练习题 014】 一个数如果恰好等于它的因子之和,这个数就称为“完数”。例如6=1+2+3。编程找出1000以内的所有完数。

    a.b只要数字a能被数字b整除,不论b是不是质数,都算是a的因子.比如:8的质因子是 2, 2, 2,但8的因子就包括 1,2,4. import math   for i in range(2, 1 ...

  5. setState的参数接收函数

  6. ssh登录

    ssh 用户名@IP地址 -p 端口号 ssh root@127.0.0.1 -p 2222

  7. [转帖]xserver相关知识汇总

    xserver相关知识汇总 https://blog.csdn.net/QTVLC/article/details/81739984   本文主要是从以下几个方面介绍xorg-xserver 相关的知 ...

  8. Spring的Bean配置

    IOC和DI 网上概念很多,感兴趣可以去搜一搜,在这里我就给个比喻: IOC:以前我们买东西都要去商店买,用了IOC之后,我们只要在门口放个箱子, Spring就会给我相应商品,ಠᴗಠ 举个例子 cl ...

  9. Spring JDBC模版以及三种数据库连接池的使用

    jar包版本有点乱,直接忽略版本号,将就一下. 这里引了aop包是因为在spring3版本之后用模版对数据库库操作时会出现问题,但是不会报错,也没有提示. 所以这里直接引入,以及之后会用到的DBCP与 ...

  10. C#中List<T>排序

    在面向对象开发过程中我们经常将一组对象放到一个特定集合中,此时我们通常使用泛型集合来存放,常见的如:List.Dictionary等.在使用这些泛型集合时我们有时需要对其进行排序,下面我们就一起学习下 ...