【BZOJ3561】DZY Loves Math VI (数论)
【BZOJ3561】DZY Loves Math VI (数论)
题面
题解
ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^n[gcd(i,j)=d](\frac{ij}{d})^d\\
&=\sum_{d=1}^nd^d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)=1]i^dj^d\\
&=\sum_{d=1}^nd^d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}i^dj^d\sum_{x|gcd(i,j)}\mu(x)\\
&=\sum_{d=1}^nd^d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}i^dj^d\sum_{x|i,x|j}\mu(x)\\
&=\sum_{d=1}^nd^d\sum_{x=1}^{n/d}\mu(x)\sum_{i=1}^{n/xd}\sum_{j=1}^{m/xd}(ix)^d(jx)^d\\
&=\sum_{d=1}^nd^d\sum_{x=1}^{n/d}\mu(x)x^{2d}\sum_{i=1}^{n/xd}\sum_{j=1}^{m/xd}i^dj^d\\
\end{aligned}\]
然后发现\(\sum_i i^d\)不会算,实际上枚举\(d\)的时候就大力预处理一次,这样子的预处理的复杂度是调和级数的。
然后整个式子都调和级数的爆算就完了。。
#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
#define MAX 500500
int mu[MAX],pri[MAX],tot;
bool zs[MAX];
int n,m,ans,v[MAX],s[MAX],x[MAX],D[MAX];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
void pre(int n)
{
mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=MOD-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
mu[i*pri[j]]=MOD-mu[i];
}
}
}
int main()
{
scanf("%d%d",&n,&m);if(n>m)n^=m,m^=n,n^=m;pre(n);
for(int i=1;i<=m;++i)v[i]=x[i]=1;
for(int i=1;i<=n;++i)D[i]=fpow(i,i);
for(int d=1;d<=n;++d)
{
for(int i=1;i<=m/d;++i)v[i]=1ll*v[i]*i%MOD;
for(int i=1;i<=m/d;++i)s[i]=(s[i-1]+v[i])%MOD;
for(int i=1;i<=n/d;++i)x[i]=1ll*x[i]*i%MOD*i%MOD;
for(int i=1;i<=n/d;++i)ans=(ans+1ll*D[d]*mu[i]%MOD*x[i]%MOD*s[n/d/i]%MOD*s[m/d/i])%MOD;
}
printf("%d\n",ans);
return 0;
}
【BZOJ3561】DZY Loves Math VI (数论)的更多相关文章
- BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演
原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...
- [BZOJ3561] DZY Loves Math VI
(14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...
- BZOJ3561 DZY Loves Math VI 莫比乌斯反演
传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...
- BZOJ3561 DZY Loves Math VI 【莫比乌斯反演】
题目 给定正整数n,m.求 输入格式 一行两个整数n,m. 输出格式 一个整数,为答案模1000000007后的值. 输入样例 5 4 输出样例 424 提示 数据规模: 1<=n,m<= ...
- 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)
3561: DZY Loves Math VI Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 205 Solved: 141 Description ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- 【bzoj3561】DZY Loves Math VI 莫比乌斯反演
题目描述 给定正整数n,m.求 输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...
- BZOJ3560 DZY Loves Math V 数论 快速幂
原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...
- 【BZOJ】3561: DZY Loves Math VI
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...
随机推荐
- Python_程序实现发红包
发红包 200块钱 20个红包 将200块随机分成20份 基础版本: import random ret = random.sample(range(1, 200 * 100), 19) ret = ...
- 学习 yii2.0——视图之间相互包含
布局 首先创建一个布局文件simple.php,路径是在views/layout/目录下. <p>this is header</p> <?= $content ?> ...
- CentOS7 下面安装jdk1.8
1. 卸载已有的jdk rpm -qa |grep jdk |xargs rpm -e --nodeps 2. 使用xftp上传 jdk 的文件我这里上传的是 jdk-8u121-linux-x64. ...
- input type=date时,时间数据回填,报错The specified value "2019-0404-18" does not conform to the required format, "yyyy-MM-dd".
<input autocomplete id="start-time" name="start_time" type="date" c ...
- 初次启动hive,解决 ls: cannot access /home/hadoop/spark-2.2.0-bin-hadoop2.6/lib/spark-assembly-*.jar: No such file or directory问题
>>提君博客原创 http://www.cnblogs.com/tijun/ << 刚刚安装好hive,进行第一次启动 提君博客原创 [hadoop@ltt1 bin]$ ...
- Day 3-3 内置方法
常用内置函数方法: min,max li = [1, 2, 3, 6, 9, 5, 10, 26] print('li的最小值是:', min(li)) # 取最小值 print('li的最大值是:' ...
- Python memecache
memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载,故常用来做数据库缓存.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...
- Monkey脚本API简介
一.API简介 LaunchActivity(pkg_name, cl_name):启动应用的Activity.参数:包名和启动的Activity. Tap(x, y, tapDuration): 模 ...
- Java多线程之通过标识关闭线程
package org.study2.javabase.ThreadsDemo.status; /** * @Auther:GongXingRui * @Date:2018/9/19 * @Descr ...
- PHPStorm 配置命名空间
文件-设置-Directories 选中:application 点击顶部:Sources,右侧会出现 Source Floders 配置项 点击:p进行设置 输入app\