题目描述

你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。
已知办公楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份。
然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计 2K 个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K 个办公楼一定是相异的)。
此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K对办公楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距离)尽可能小。
下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。

上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用 K=2 条电缆。第 1 条电缆的长度是 3km―1km = 2km,第 2 条电缆的长度是 6km―4km = 2 km。这种配对方案需要总长 4km 的网络电缆,满足距离之和最小的要求。

分析

题目大意
给你n个数,两个数分成一组,一共分成k组,使得相差的和最小。
显然,一组的数一定是相邻的,那么考虑最简单最不对的暴力就是找出所有的差然后排序取前k个。
明显不对,那么我们就先差分求出两个数之间的差,然后全部放到一个优先队列中,因为我们只能有k个。(慕容宝宝大佬好巨啊),慕容宝宝大佬说什么反悔机制???简单的说就是因为不能取相邻的,那么相邻3个的差分都不能拿,那么我们就将这三个打一个包。表示的是一开始贪心时我们选择的是中间这一个。
之后再优先队列查询到这个不需要的时候,我们就将这个,换掉,也就是\(a[left]+a[right]-a[mid]\),也就是将两边的加回来,将这个点删除。
删除操作问题,我们可以用双向链表来维护就可以了。

ac代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define N 100005
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1;
    char ch = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') fl = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= fl;
};
struct node {
    int id, val;
    node(int id, int val): id(id), val(val){}
    bool operator <(const node &rhs) const {
        return val > rhs.val;
    }
};
int f[N], a[N], nxt[N], lst[N];
int n, k;
priority_queue<node>q;
ll ans = 0;
int main() {
    read(n); read(k);
    for (int i = 1; i <= n; i ++) {
        read(a[i]);
    }
    for (int i = 1; i < n; i ++) {
        f[i] = a[i + 1] - a[i];
        nxt[i] = i + 1;
        lst[i] = i - 1;
    }
    nxt[n - 1] = 0;
    for (int i = 1; i < n; i ++) q.push(node(i, f[i]));
    for (int i = 1; i <= k; i ++) {
        node nw = q.top();
        q.pop();
        if (nw.val != f[nw.id]) {
            ++ k;
            continue;
        }
        ans += nw.val;
        int left = lst[nw.id], right = nxt[nw.id];
        nxt[nw.id] = nxt[right];
        lst[nxt[nw.id]] = nw.id;
        lst[nw.id] = lst[left];
        nxt[lst[nw.id]] = nw.id;
        f[nw.id] = (left && right) ? min(inf, f[left] + f[right] - f[nw.id]): inf;
        f[left] = f[right] = inf;
        q.push(node(nw.id, f[nw.id]));
    }
    printf("%lld\n", ans);
    return 0;
}

[luogu3620][APIO/CTSC 2007]数据备份【贪心+堆+链表】的更多相关文章

  1. 洛谷$P3620\ [APIO/CTSC 2007]$数据备份 贪心

    正解:贪心 解题报告: 传送门$QwQ$ $umm$感觉这种问题还蛮经典的,,,就选了某个就不能选另一个这样儿,就可以用堆模拟反悔操作 举个$eg$,如果提出了$a_i$,那就$a_{i-1}$和$a ...

  2. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  3. P3620 [APIO/CTSC 2007]数据备份

    P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...

  4. 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告

    P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...

  5. [APIO/CTSC 2007]数据备份(贪心+堆)

    你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. ...

  6. 洛谷P3620 [APIO/CTSC 2007] 数据备份 [堆,贪心,差分]

    题目传送门 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽 ...

  7. P3620 [APIO/CTSC 2007]数据备份[优先队列+贪心]

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

  8. 题解:[APIO/CTSC 2007]数据备份

    你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣.已 ...

  9. 洛谷P3620 [APIO/CTSC 2007] 数据备份

    题目 贪心+堆. 一般贪心题用到堆的时候都会存在一种反悔操作,因此这个题也不例外. 首先电缆一定是连接两个相邻的点的,这很好证明,其次一个点只能被一条电缆连接,所以我们通过选这个电缆,不选相邻电缆和选 ...

随机推荐

  1. P124黎曼可积性刻画 的两个备注

    1.这里为什么是开集?   2.请问为什么说了是开集马上就说是有界可测函数? 开集为可测集

  2. Socket编程,SocketServer模块

    一.SocketServer的几种类型 面向远程: TCP 协议链接:socketserver.TCPServer(server_address, RequestHandlerClass, bind_ ...

  3. js-cookie和session

    ###1.cookie 含义: 存储在访问者的计算机中的变量,即存储在客户端 创建一个cookie /* getCookie方法判断document.cookie对象中是否存有cookie,若有则判断 ...

  4. nodejs配置nginx 以后链接mongodb数据库

    服务器 :windows server2008 R2 反向代理 :nginx 1.15.1 for window 64位 数据库:mongodb 4 64位 使用框架express 首先下载nodej ...

  5. spring boot中的约定优于配置

    Spring Boot并不是一个全新的框架,而是将已有的Spring组件整合起来. Spring Boot可以说是遵循约定优于配置这个理念产生的.它的特点是简单.快速和便捷. 既然遵循约定优于配置,则 ...

  6. spring AOP源码分析(二)

    现在,我们将对代理对象的生成过程进行分析. 在springAOP源码分析(一)的例子中,将会生成哪些对象呢? 可以看到将会生成六个对象,对应的beanName分别是: userDao:目标对象 log ...

  7. Bootstrap 字体图标(Glyphicons)

    http://www.runoob.com/bootstrap/bootstrap-glyphicons.html 什么是字体图标? 字体图标是在 Web 项目中使用的图标字体.虽然,Glyphico ...

  8. drf 之序列化组件

    序列化 把Python中对象转换为json格式字符串 反序列化 把json格式转为为Python对象. 用orm查回来的数据都是都是一个一个的对象, 但是前端要的是json格式字符串. 序列化两大功能 ...

  9. docker遇到的问题以及docker 操作镜像的基本操作

    root@localhost ~]# systemctl status docker.service ● docker.service - Docker Application Container E ...

  10. If you want an embedded database (H2, HSQL or Derby), please put it on the classpath.

    学习Spring Boot 过程中遇到了下列这个问题 Description: Failed to configure a DataSource: 'url' attribute is not spe ...