探讨函数$f(x)=\dfrac{1}{x-a}+\dfrac{1}{x-b}$其中$a<b$的几个性质

分析:
对称性:关于$(\dfrac{a+b}{2},0)$证明提示:$f(x)+f(a+b-x)=0$且定义域关于$(\dfrac{a+b}{2},0)$对称
单调性:单调递减区间$(-\infty,a),(a,b),(b,+\infty)$,证明提示:用单调性的定义
渐进性:$\lim\limits_{x\rightarrow-\infty}f(x)=0$;$\lim\limits_{x\rightarrow+\infty}f(x)=0$;
$\lim\limits_{x\rightarrow a^+}f(x)=+\infty$;$\lim\limits_{x\rightarrow a^-}f(x)=-\infty$
$\lim\limits_{x\rightarrow b^+}f(x)=+\infty$;$\lim\limits_{x\rightarrow b^-}f(x)=-\infty$
最后提供一张$a=1,b=2$时的图.

MT【248】$f(x)=\dfrac{1}{x-1}+\dfrac{1}{x-b}$的性质的更多相关文章

  1. (极值点偏移问题的几种方案)已知$\dfrac{\ln x_1}{x_1}=\dfrac{\ln x_2}{x_2}$,求证:$x_1+x_2>2\text{e}$.

    第一个图适合在手机上操作(点击\(\checkmark\)显示/隐藏) 第二个图适合在电脑上操作(点击\(\checkmark\)显示/隐藏)

  2. MT【131】$a_{n+1}\cdot a_n=\dfrac 1n$

    已知数列\(\{a_n\}\)满足\(a_1=1\),\(a_{n+1}\cdot a_n=\dfrac 1n\)(\(n\in\mathbb N^*\)). (1) 求证:\(\dfrac{a_{n ...

  3. MT【210】四点共圆+角平分线

    (2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$ ...

  4. MT【330】u,v,w法

    已知$a^2+b^2+c^2=1$求$abc(a+b+c)$的最小值.(2018辽宁预赛解答压轴题) 不妨设$a+b+c=3u,ab+bc+ca=3v^2,abc=w^3$,令$u^2=tv^2$要求 ...

  5. MT【329】二次函数系数的最大最小

    已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\min\{a,b,c\}$求$t$的最大值. 分析:由$a,c$的对称性,不妨$c\ge a$即$2a+b\le1$ ...

  6. MT【321】分类线性规划

    若二次函数$f(x)=ax^2+bx+c(a,b,c>0)$有零点,则$\min\{\dfrac{b+c}{a},\dfrac{c+a}{b},\dfrac{a+b}{c}\}$ 的最大值为__ ...

  7. MT【298】双参数非齐次

    若函数$f(x)=x^2+(\dfrac{1}{3}+a)x+b$在$[-1,1]$上有零点,则$a^2-3b$的最小值为_____ 分析:设零点为$x_0$,则$b=-x^2_0-(\dfrac{1 ...

  8. MT【296】必要性探路

    已知$a,b\in R.f(x)=e^x-ax+b$,若$f(x)\ge1$恒成立,则$\dfrac{b-a}{a}$的取值范围_____ 提示:答案:$[-1,\infty)$取$x=0,b\ge0 ...

  9. MT【290】内外圆求三角最值

    求$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$的最小值. 提示:$\sqrt{\dfrac{5}{4}-\sin x} ...

随机推荐

  1. B. Switches and Lamps

    链接 [https://codeforces.com/contest/985/problem/B] 题意 给你n,m,分别是n个开关,m个灯 给一个n*m的字符矩阵aij=1,表示i可以控制j这个灯 ...

  2. 大神教你Debian GNU/Linux 9.7 “Stretch” Live和安装镜像开放下载

    Debian项目团队于昨天发布了Debian GNU/Linux 9 "Stretch" 的第7个维护版本更新,重点修复了APT软件管理器中存在的安全漏洞.在敦促每位用户尽快升级系 ...

  3. 消息队列queue

    一.queue 在多线程编程中,程序的解耦往往是一个麻烦的问题,以及在socket网络编程中也会有这样的问题.recv 和send之间,如果服务端有消息,问题需要发送给客户端,而那边的recv 被主程 ...

  4. JavaScript动态修改html组件form的action属性

    用javaScript动态修改html组件form的action属性,可以在提交时再决定处理表单的页面. <%--JavaScript部分--%><script language=& ...

  5. Python_生产者消费者模型、管道、数据共享、进程池

    1.生产者消费者模型 生产者 —— 生产数据的人 消费者 —— 消费数据的人 生产者消费者模型:供销数据不平衡的现象. import time import random from multiproc ...

  6. 敏捷开发、DevOps相关书籍——书单

    自己瞎整理的一些书单,都是豆瓣评分比较高的书,可以作为选择的一个参考. 书名 豆瓣链接 持续交付:发布可靠软件的系统方法 https://book.douban.com/subject/6862062 ...

  7. css实现三栏自适应布局(两边固定,中间自适应)以及优缺点

    方法一:绝对定位(absolute + margin) 原理:给左右两边的元素设置absolute,这样左右两边的元素脱离标准文档流的控制,中间的元素自然会上来,然后给中间的元素设置margin留出左 ...

  8. linux关闭触摸板

    关闭触摸板 sudo modprobe -r psmouse 如果打开触摸板就是: sudo modprobe psmouse

  9. 模态框 modal data-toggle data-target

    模态框 modal data-toggle data-target   1. Data-*属性 模态框(modal) 触发事件(data-toggle) 触发对象data-target(ID 或类) ...

  10. 运行Spark-shell,解决Unable to load native-hadoop library for your platform

    启动spark后,运行bin/spark-shell会出现一个警告 提君博客原创 WARN util.NativeCodeLoader: Unable to load native-hadoop li ...