tensorflow faster rann
github 上大神的代码 https://github.com/endernewton/tf-faster-rcnn.git
在自己跑的过程中的问题:
1. 数据集的问题:
作者实现了 voc,coco数据集接口。由于我要跑自己的数据,所以要重写数据接口。为了方便我将自己的数据格式改为voc的数据格式,使用原来voc的数据接口pascal_voc.py。
voc 数据格式中需要文件:
data
-----VOCdevkit2007 (自己可以改)
|
----VOC2007
|
-----Annotations (目标的标注文件.xml)
-----ImageSets
|
----- trainval.txt (用于训练的图像名)
----- test.txt (用于测试的图像名)
-----JPEGImages (jpg 图像)
具体 .xml 文件编写根据自己已有的数据
写xml 文件主要内容:
from xml.dom.minidom import Document doc=Document()
Annotation=doc.createElement('annotation') # 创建annotation 域
doc.appendChild(Annotation) # 写入annotation 域 object=doc.createElement('object')
Annotation.appendChild('object') # 写入name
object_name=doc.createElement('name')
object_name_text=doc.createTextNode('分类类别名')
object_name.appendChild(object_name_text)
object.appendChild(object_name) # 写入difficult,虽然不用,但是如果不加直接使用pascal_voc会出错
object_difficult=doc.createElement('difficult')
object_difficult_text=doc.createTextNode('0')
object_difficult.appendChild(object_difficult_text)
object.appendChild(object_difficult) # 写入box
bndbox=doc.createElement('bndbox')
object.appendChild(bndbox) object_box=doc.createElement('bndbox')
object_box_xmin=doc.createElement('xmin')
object_box_xmin_text=doc.createTextNode(str(image_box[0]))
object_box_xmin.appendChild(object_box_xmin_text)
bndbox.appendChild(object_box_xmin) object_box_ymin=doc.createElement('ymin')
object_box_ymin_text=doc.createTextNode(str(image_box[1]))
object_box_ymin.appendChild(object_box_ymin_text)
bndbox.appendChild(object_box_ymin) object_box_xmax=doc.createElement('xmax')
object_box_xmax_text=doc.createTextNode(str(image_box[2]))
object_box_xmax.appendChild(object_box_xmax_text)
bndbox.appendChild(object_box_xmax) object_box_ymax=doc.createElement('ymax')
object_box_ymax_text=doc.createTextNode(str(image_box[3]))
object_box_ymax.appendChild(object_box_ymax_text)
bndbox.appendChild(object_box_ymax) f=open(filename,"w")
f.write(doc.toprettyxml(indent=" "))
f.close()
得到:
<annotation>
<object>
<name>abc</name>
<difficult>0</difficult>
<bndbox>
<xmin>107</xmin>
<ymin>155</ymin>
<xmax>193</xmax>
<ymax>214</ymax>
</bndbox>
</object>
</annotation>
改pascal_voc.py 文件,修改自己的classes,以及xml中对应域的名字等。
2. 数据完成之后,就可以用来训练了,此时出现问题:
Assign requires shapes of both tensors to match. lhs shape= [2048,124] rhs shape= [2048,84]
因为我现在变为30类,30+1 (背景),31*4=124 (4为box 的定位),而原来为84类。
怎么改最后的输出类别个数?在caffe中可以直接在prototxt 定义的网络结构中改,在tensorflow中怎么改呢?
- 我们执行train_faster_rcnn 传入了(gpuId, dataset, net) 调用tools/trainval_net.py
- 在trainval_net.py 中调用net=resnetv1, load 网络模型, 调用models/train_net
- 在train_net 中调用train_model 函数,定义计算图,在initialize 函数中对sess 进行初始化
def initialize(self, sess):
# Initial file lists are empty
np_paths = []
ss_paths = []
# Fresh train directly from ImageNet weights
print('Loading initial model weights from {:s}'.format(self.pretrained_model))
variables = tf.global_variables()
# Initialize all variables first
sess.run(tf.variables_initializer(variables, name='init'))
var_keep_dic = self.get_variables_in_checkpoint_file(self.pretrained_model)
# Get the variables to restore, ignoring the variables to fix
variables_to_restore = self.net.get_variables_to_restore(variables, var_keep_dic)
# 要加载的变量
restorer = tf.train.Saver(variables_to_restore)
# 进行加载。。出错的地方就是这里
restorer.restore(sess, self.pretrained_model)
print('Loaded.')
# Need to fix the variables before loading, so that the RGB weights are changed to BGR
# For VGG16 it also changes the convolutional weights fc6 and fc7 to
# fully connected weights
self.net.fix_variables(sess, self.pretrained_model)
print('Fixed.')
last_snapshot_iter = 0
rate = cfg.TRAIN.LEARNING_RATE
stepsizes = list(cfg.TRAIN.STEPSIZE) return rate, last_snapshot_iter, stepsizes, np_paths, ss_paths
要改正,就要不加载最后的 预测层和 box 回归层。

对要加载的文件进行选择,然后就可训练自己的数据了
tensorflow faster rann的更多相关文章
- tensorflow faster rcnn 代码分析一 demo.py
os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...
- Tensorflow faster rcnn系列一
注意:本文主要是学习用,发现了一个在faster rcnn训练流程写的比较详细的博客. 大部分内容来自以下博客连接:https://blog.csdn.net/weixin_37203756/arti ...
- python3 + Tensorflow + Faster R-CNN训练自己的数据
之前实现过faster rcnn, 但是因为各种原因,有需要实现一次,而且发现许多博客都不全面.现在发现了一个比较全面的博客.自己根据这篇博客实现的也比较顺利.在此记录一下(照搬). 原博客:http ...
- Faster_Rcnn在windows下运行踩坑总结
Faster_Rcnn在windows下运行踩坑总结 20190524 今天又是元气满满的一天! 1.代码下载 2.编译 3.下载数据集 4.下载pre-train Model 5.运行train ...
- TensorFlow_Faster_RCNN中demo.py的运行(CPU Only)
GitHub项目地址,https://github.com/endernewton/tf-faster-rcnnTensorflow Faster RCNN for Object Detection. ...
- Technology Document Guide of TensorRT
Technology Document Guide of TensorRT Abstract 本示例支持指南概述了GitHub和产品包中包含的所有受支持的TensorRT 7.2.1示例.Tensor ...
- 新人如何运行Faster RCNN的tensorflow代码
0.目的 刚刚学习faster rcnn目标检测算法,在尝试跑通github上面Xinlei Chen的tensorflow版本的faster rcnn代码时候遇到很多问题(我真是太菜),代码地址如下 ...
- Tensorflow版Faster RCNN源码解析(TFFRCNN) (2)推断(测试)过程不使用RPN时代码运行流程
本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第二篇 推断(测试)过程不使用RPN时代码运行流程 作者:Jiang Wu 原文见:https://hom ...
- TensorFlow Object Detection API中的Faster R-CNN /SSD模型参数调整
关于TensorFlow Object Detection API配置,可以参考之前的文章https://becominghuman.ai/tensorflow-object-detection-ap ...
随机推荐
- Python3 与 C# 面向对象之~异常相关
周末多码文,昨天晚上一篇,今天再来一篇: 在线编程:https://mybinder.org/v2/gh/lotapp/BaseCode/master 在线预览:http://github.les ...
- NowCoder--牛客练习赛30 C_小K的疑惑
题目链接 :牛客练习赛30 C_小K的疑惑 i j k 可以相同 而且 距离%2 只有 0 1两种情况 我们考虑 因为要 d(i j)=d(i k)=d(j k) 所以我们只能找 要么三个点 任意两个 ...
- Python中pandas dataframe删除一行或一列:drop函数
用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 参数说明:labels 就是要删除的行列的 ...
- Linux:不同文件相同列字符合并文件(awk函数)
存在file1.txt,其内容如下: H aa 0 0 1 -9 H bb 0 0 2 -9 H cc 0 0 2 -9 存在file2.txt,其内容如下: H aa 0 0 0 -9 asd qw ...
- java web整合office web apps
1.下载安装vmware虚拟机 2.下载windows server 2012或者window server 2012 R2的iso镜像 http://www.xp85.com/html/Window ...
- POJ 3249 Test for Job (记忆化搜索)
Test for Job Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 11830 Accepted: 2814 Des ...
- 新建工程时报错(26, 13) Failed to resolve: com.android.support:appcompat-v7:28.+ ,
allprojects { repositories { jcenter() maven { url "https://maven.google.com" } } }
- octave基本操作
参考: https://blog.csdn.net/iszhenyu/article/details/78712228: 吴恩达机器学习视频: 在学习机器学习的过程中,免不了要跟MATLAB.Oct ...
- 《Java 程序设计》第一周学习总结
本周因为刚刚接触Linux和码云等等,所以在完成作业的时候遇到很多问题. 首先,在安装Linux没有安装盘片,在盘片安装之后成功建立虚拟机,建立虚拟机后首先要下载jdk,第一次下载时没有选对格式,Li ...
- 剑指Offer_编程题_11
题目描述 输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. class Solution { public: int NumberOf1(int n) { int size = 3 ...