Distance on the tree
Distance on the tree
https://nanti.jisuanke.com/t/38229
DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(National Olympiad in Informatics in Provinces) in Senior High School. So when in Data Structure Class in College, he is always absent-minded about what the teacher says.
The experienced and knowledgeable teacher had known about him even before the first class. However, she didn't wish an informatics genius would destroy himself with idleness. After she knew that he was so interested in ACM(ACM International Collegiate Programming Contest), she finally made a plan to teach him to work hard in class, for knowledge is infinite.
This day, the teacher teaches about trees." A tree with nn nodes, can be defined as a graph with only one connected component and no cycle. So it has exactly n-1n−1 edges..." DSM is nearly asleep until he is questioned by teacher. " I have known you are called Data Structure Master in Graph Theory, so here is a problem. "" A tree with nn nodes, which is numbered from 11 to nn. Edge between each two adjacent vertexes uuand vv has a value w, you're asked to answer the number of edge whose value is no more than kk during the path between uu and vv."" If you can't solve the problem during the break, we will call you DaShaMao(Foolish Idiot) later on."
The problem seems quite easy for DSM. However, it can hardly be solved in a break. It's such a disgrace if DSM can't solve the problem. So during the break, he telephones you just for help. Can you save him for his dignity?
Input
In the first line there are two integers n,mn,m, represent the number of vertexes on the tree and queries(2 \le n \le 10^5,1 \le m \le 10^52≤n≤105,1≤m≤105)
The next n-1n−1 lines, each line contains three integers u,v,wu,v,w, indicates there is an undirected edge between nodes uu and vv with value ww. (1 \le u,v \le n,1 \le w \le 10^91≤u,v≤n,1≤w≤109)
The next mm lines, each line contains three integers u,v,ku,v,k , be consistent with the problem given by the teacher above. (1 \le u,v \le n,0 \le k \le 10^9)(1≤u,v≤n,0≤k≤109)
Output
For each query, just print a single line contains the number of edges which meet the condition.
样例输入1复制
3 3
1 3 2
2 3 7
1 3 0
1 2 4
1 2 7
样例输出1复制
0
1
2
样例输入2复制
5 2
1 2 1000000000
1 3 1000000000
2 4 1000000000
3 5 1000000000
2 3 1000000000
4 5 1000000000
样例输出2复制
2
4 题意:给一颗树,有m次询问,每次询问 u v w,求u到v的路径中有多少边权值<=w。
思路:第一次遇到这种题目(还是太菜= =),lca+主席树
以1为根结点,在跑dfs时建立主席树,查询某点时查询根结点到该点有多少条小于等于k的路径,像求lca一样,答案就是查询的那两条路径上的答案 减去 两倍的 根节点到它们最近公共祖先的答案
#include<bits/stdc++.h>
#define ll long long
#define maxn 100005
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define pb push_back
#define pii pair<int,int>
using namespace std; vector<pii>ve[maxn];
int fa[maxn][],deep[maxn];
int n;
struct sair{
int l,r,v;
}tree[maxn*];
int root[maxn],cnt; void add(int pre,int now,int val,int l,int r){
tree[now].v=tree[pre].v+;
if(l==r){
return;
}
int mid=l+r>>;
if(val<=mid){
tree[now].l=++cnt;
tree[now].r=tree[pre].r;
add(tree[pre].l,tree[now].l,val,l,mid);
}
else{
tree[now].r=++cnt;
tree[now].l=tree[pre].l;
add(tree[pre].r,tree[now].r,val,mid+,r);
}
} int query(int now,int val,int l,int r){
if(l==r){
return tree[now].v;
}
int mid=l+r>>;
if(val<=mid){
return query(tree[now].l,val,l,mid);
}
else{
return tree[tree[now].l].v+query(tree[now].r,val,mid+,r);
}
} void dfs(int now,int pre,int dep){
deep[now]=dep;
fa[now][]=pre;
if(pre==) fa[now][]=now;
for(int i=;i<ve[now].size();i++){
if(ve[now][i].first!=pre){
if(!root[now]) root[now]=++cnt;
if(!root[ve[now][i].first]) root[ve[now][i].first]=++cnt;
add(root[now],root[ve[now][i].first],ve[now][i].second,,1e9+);
dfs(ve[now][i].first,now,dep+);
}
}
} void Init(){
for(int i=;i<=;i++){
for(int j=;j<=n;j++){
fa[j][i]=fa[fa[j][i-]][i-];
}
}
} int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
for(int i=;i>=;i--){
if(deep[fa[x][i]]>=deep[y]){
x=fa[x][i];
}
}
if(x==y) return x;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
} int main(){
int m;
scanf("%d %d",&n,&m);
int u,v,w;
for(int i=;i<n;i++){
scanf("%d %d %d",&u,&v,&w);
ve[u].pb({v,w});
ve[v].pb({u,w});
}
dfs(,,);
Init();
while(m--){
scanf("%d %d %d",&u,&v,&w);
int ans=query(root[u],w,,1e9+)+query(root[v],w,,1e9+);
ans-=query(root[lca(u,v)],w,,1e9+)*;
printf("%d\n",ans);
} }
/*
3 3
1 3 2
2 3 7
1 3 0
1 2 4
1 2 7
*/
Distance on the tree的更多相关文章
- ural1471 Distance in the Tree
Distance in the Tree Time limit: 1.0 secondMemory limit: 64 MB A weighted tree is given. You must fi ...
- 南昌网络赛J. Distance on the tree 树链剖分+主席树
Distance on the tree 题目链接 https://nanti.jisuanke.com/t/38229 Describe DSM(Data Structure Master) onc ...
- 南昌网络赛J. Distance on the tree 树链剖分
Distance on the tree 题目链接 https://nanti.jisuanke.com/t/38229 Describe DSM(Data Structure Master) onc ...
- 2019南昌邀请赛网络预选赛 J.Distance on the tree(树链剖分)
传送门 题意: 给出一棵树,每条边都有权值: 给出 m 次询问,每次询问有三个参数 u,v,w ,求节点 u 与节点 v 之间权值 ≤ w 的路径个数: 题解: 昨天再打比赛的时候,中途,凯少和我说, ...
- Distance on the tree(数剖 + 主席树)
题目链接:https://nanti.jisuanke.com/t/38229 题目大意:给你n个点,n-1条边,然后是m次询问,每一次询问给你u,v,w然后问你从u -> v 的路径上有多少边 ...
- 南昌网络赛 Distance on the tree 主席树+树剖 (给一颗树,m次查询ui->vi这条链中边权小于等于ki的边数。)
https://nanti.jisuanke.com/t/38229 题目: 给一颗树,m次查询ui->vi这条链中边权小于等于ki的边数. #include <bits/stdc++.h ...
- 2019南昌邀请赛网络赛:J distance on the tree
1000ms 262144K DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(N ...
- 2019年ICPC南昌网络赛 J. Distance on the tree 树链剖分+主席树
边权转点权,每次遍历到下一个点,把走个这条边的权值加入主席树中即可. #include<iostream> #include<algorithm> #include<st ...
- 【树形dp】【CF161D】distance on a tree + 【P1352】没有上司的舞会
T1题面: 输入点数为N一棵树 求树上长度恰好为K的路径个数 (n < 1e5, k < 500) 这是今天的考试题,也是一道假的紫题,因为我一个根本不会dp的蒟蒻只知道状态就一遍A掉了- ...
随机推荐
- numpy和matploptlib
numpy Numpy介绍 编辑 一个用python实现的科学计算,包括:1.一个强大的N维数组对象Array:2.比较成熟的(广播)函数库:3.用于整合C/C++和Fortran代码的工具包:4.实 ...
- 数据库乐观锁和悲观锁的理解和实现(转载&总结)
数据的锁定分为两种,第一种叫作悲观锁,第二种叫作乐观锁. 1.悲观锁,就是对数据的冲突采取一种悲观的态度,也就是说假设数据肯定会冲突,所以在数据开始读取的时候就把数据锁定住.[数据锁定:数据将暂时不会 ...
- InetSim配置使用
参考网址: http://techanarchy.net/2013/08/installing-and-configuring-inetsim/ https://blog.csdn.net/isins ...
- 一则ORACLE进程都在但是无法进入实例的问题
[oracle@localhost ~]$ ps -ef|grep smonoracle 14809 1 0 Sep25 ? 00:13:02 ora_smon_mailp3[oracle@local ...
- docker 搭建 hustoj
docker 搭建 hustoj hustoj 是个GPL开源的OJ,其提供了docker形式的安装方式. 为执行方便,选择使用aliyun提供的docker镜像来加速安装. 拉取镜像 docker ...
- 【原创】Windows上应用程序报错常用分析方法总结
在日常使用Windows的过程中,经常会遇到应用程序不能正常启动.关闭等使用问题.对于Windows来说,解决这些问题的方法比较多,大多时候我们可以通过百度或谷歌搜索来解决.但更多的时候,我们需要找出 ...
- Redis单线程架构
参考链接: http://blog.csdn.net/qqqqq1993qqqqq/article/details/77538202 单线程模型: redis中的数据结构并不全是简单的kv,还有lis ...
- Hello_Git!!!(Git的安装)
Install_Git&Say Hello! Mac与Linux平台 ||最近的Mac平台中都预装了Git,而各个版本的Linux中也都以软件包(Package)的形式提供给了用户,详细请参 ...
- (转)SQLServer_十步优化SQL Server中的数据访问 三
原文地址:http://tech.it168.com/a2009/1125/814/000000814758_all.shtml 第六步:应用高级索引 实施计算列并在这些列上创建索引 你可能曾经写过从 ...
- PHP 实现多网站共享用户SESSION 数据解决方案
PHP 实现多网站共享用户SESSION 数据解决方案 来源URL:http://blog.csdn.net/dongdongzzcs/article/details/6906613 一.问题起源 稍 ...