Description

The Leiden University Library has millions of books. When a student wants to borrow a certain book, he usually submits an online loan form. If the book is available, then the next day the student can go and get it at the loan counter. This is the modern way of borrowing books at the library.

There is one department in the library, full of bookcases, where still the old way of borrowing is in use. Students can simply walk around there, pick out the books they like and, after registration, take them home for at most three weeks.

Quite often, however, it happens that a student takes a book from the shelf, takes a closer look at it, decides that he does not want to read it, and puts it back. Unfortunately, not all students are very careful with this last step. Although each book has a unique identification code, by which the books are sorted in the bookcase, some students put back the books they have considered at the wrong place. They do put it back onto the right shelf. However, not at the right position on the shelf.

Other students use the unique identification code (which they can find in an online catalogue) to find the books they want to borrow. For them, it is important that the books are really sorted on this code. Also for the librarian, it is important that the books are sorted. It makes it much easier to check if perhaps some books are stolen: not borrowed, but yet missing.

Therefore, every week, the librarian makes a round through the department and sorts the books on every shelf. Sorting one shelf is doable, but still quite some work. The librarian has considered several algorithms for it, and decided that the easiest way for him to sort the books on a shelf, is by sorting by transpositions: as long as the books are not sorted,

  1. take out a block of books (a number of books standing next to each other),
  2. shift another block of books from the left or the right of the resulting ‘hole’, into this hole,
  3. and put back the first block of books into the hole left open by the second block.

One such sequence of steps is called a transposition.

The following picture may clarify the steps of the algorithm, where X denotes the first block of books, and Y denotes the second block.

Original situation:
After step 1:
After step 2:
After step 3:

Of course, the librarian wants to minimize the work he has to do. That is, for every bookshelf, he wants to minimize the number of transpositions he must carry out to sort the books. In particular, he wants to know if the books on the shelf can be sorted by at most 4 transpositions. Can you tell him?

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with one integer n with 1 ≤ n ≤ 15: the number of books on a certain shelf.
  • One line with the n integers 1, 2, …, n in some order, separated by single spaces: the unique identification codes of the n books in their current order on the shelf.

Output

For every test case in the input file, the output should contain a single line, containing:

  • if the minimal number of transpositions to sort the books on their unique identification codes (in increasing order) is T ≤ 4, then this minimal number T;
  • if at least 5 transpositions are needed to sort the books, then the message "5 or more".

Sample Input

3
6
1 3 4 6 2 5
5
5 4 3 2 1
10
6 8 5 3 4 7 2 9 1 10

Sample Output

2
3
5 or more

题意:给n本书,每次可以选取其中一段移动到另外的位置,使得书的编号变成1~n,如果步数超过4,就输出5 or more,反则输出步数。

思路:抽取书同一长度的书,有n-len+1种选择,有n-len个位置可以插入,并且因为一位置len长度后移等于后面位置前移

Σ(n-len)*(n-len+1)/2 <= (15*14+14*13+...+2*1)/2 == 560 ,因为只用判断是否步数<=4,不同搜索(560)4,时间复杂度过大。

通过IDA*(迭代加深+A*)

迭代加深:因为我们确定答案会在5之前收到

A*:评估函数,因为一次移动,最多可以使得3本书后面的书籍编号改变,所以该状态到达终态的至少步数f = ⌈错误后继/3⌉

(红色为三本书,是一次移动种最多改变的三本,橙色区域代表移动的区域,移动至第一个红色书的后面,那么第二个和第三个红色书的后继都改变了)

#include<iostream>
#include<cstdio>
#include<cmath> using namespace std; const int maxn = ;
int t;
int n; struct Node
{
int s[maxn];
}; bool check(int s[])
{
for(int i=; i<n; i++)
if(s[i] + != s[i+])
return ;
return ;
} Node change(Node x,int l,int r,int len)
{
Node tmp = x;
for(int i=l; i<l+len; i++)
x.s[r-len-l+i+] = tmp.s[i];
for(int i=l+len; i<=r; i++)
x.s[i-len] = tmp.s[i];
return x;
} int cal(int s[])
{
int ans = ;
for(int i=; i<n; i++)
if(s[i] + != s[i+])
ans++;
return ceil(ans/3.0);
} bool dfs(Node x,int now,int lim)
{
if(now + cal(x.s) > lim)
return ;
if(check(x.s))return ;
for(int len=; len<n; len++)
{
for(int i=; i+len- <=n; i++)
{
for(int j=i+len; j<=n; j++)
{
if(dfs(change(x,i,j,len),now+,lim))return ;
}
}
}
return ;
} int main()
{
scanf("%d",&t);
Node start;
while(t--)
{
scanf("%d",&n);
for(int i=; i<=n; i++)
scanf("%d",&start.s[i]);
for(int i=; i<; i++)
{
if(dfs(start,,i))
{
printf("%d\n",i);
break;
}
else if(i == )printf("5 or more\n"); }
}
}

Booksort POJ - 3460 (IDA*)的更多相关文章

  1. POJ题目(转)

    http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法:     (1)枚举. (poj1753,poj29 ...

  2. Repeater POJ - 3768 (分形)

    Repeater POJ - 3768 Harmony is indispensible in our daily life and no one can live without it----may ...

  3. UVA - 10384 The Wall Pusher(推门游戏)(IDA*)

    题意:从起点出发,可向东南西北4个方向走,如果前面没有墙则可走:如果前面只有一堵墙,则可将墙向前推一格,其余情况不可推动,且不能推动游戏区域边界上的墙.问走出迷宫的最少步数,输出任意一个移动序列. 分 ...

  4. Radar Installation POJ - 1328(贪心)

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. ...

  5. Best Cow Fences POJ - 2018 (二分)

    Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains ...

  6. E - The Balance POJ - 2142 (欧几里德)

    题意:有两种砝码m1, m2和一个物体G,m1的个数x1,  m2的个数为x2, 问令x1+x2最小,并且将天平保持平衡 !输出  x1 和 x2 题解:这是欧几里德拓展的一个应用,欧几里德求不定方程 ...

  7. 人类即将进入互联网梦境时代(IDA)

    在电影<盗梦空间>中,男主角科布和妻子在梦境中生活了50年,从楼宇.商铺.到河流浅滩.一草一木.这两位造梦师用意念建造了属于自己的梦境空间.你或许并不会想到,在不久未来,这看似科幻的情节将 ...

  8. POJ - 2286 - The Rotation Game (IDA*)

    IDA*算法,即迭代加深的A*算法.实际上就是迭代加深+DFS+估价函数 题目传送:The Rotation Game AC代码: #include <map> #include < ...

  9. POJ3460 Booksort(IDA*)

    POJ3460 Booksort 题意:给定一个长度为n的序列,每次可以取出其中的一段数,插入任意一个位置,问最少需要几次操作才能使整个序列变为1~n 思路:IDA*+迭代加深搜索 小技巧:将一段数插 ...

随机推荐

  1. liunx 安装jdk1.8

    采用解压压缩文件形式安装 第一步:将jdk压缩文件上传至home目录下面 第二步:目录切换至/usr目录下   cd /usr 创建java目录   mkdir   java 第三步:将jdk 压缩文 ...

  2. Oracle 之 外部表

    一.外部表概述 外部表只能在Oracle 9i 之后来使用.简单地说,外部表,是指不存在于数据库中的表. 通过向Oracle 提供描述外部表的元数据,我们可以把一个操作系统文件当成一个只读的数 据库表 ...

  3. Confluence 6 注册单一小工具

    如果你不能订阅一个应用的小工具,你需要将小工具一个一个的添加进来.针对网站不支持小工具订阅和你的应用和你的 Confluence 不能建立信任连接的情况,你就只能这样添加了. 首先你需要获得小工具的 ...

  4. leetcode(js)算法之914卡牌分组

    给定一副牌,每张牌上都写着一个整数. 此时,你需要选定一个数字 X,使我们可以将整副牌按下述规则分成 1 组或更多组: 每组都有 X 张牌. 组内所有的牌上都写着相同的整数. 仅当你可选的 X > ...

  5. js获取url参数值,并解决中文乱码

    <script type="text/javascript"> function GetQueryString(name) { var reg = new RegExp ...

  6. 中介模型以及优化查询以及CBV模式

    一.中介模型:多对多添加的时候用到中介模型 自己创建的第三张表就属于是中介模型 class Article(models.Model): ''' 文章表 ''' title = models.Char ...

  7. this作用范围

    1. this的指向 var name='window';var obj={ name:'obj', say:function(){ return function(){ return this.na ...

  8. hiho1460 rmq模板题

    好久没做rmq的题了,今天写了一遍,感觉打表有点像区间dp /* 给定长为n的字符串,要求在字符串中选择k个字符, 选择的子系列字典序最小 因为选择k个字符,那么就是去掉n-k个字符 那么[1,n-k ...

  9. Just oj 2018 C语言程序设计竞赛(高级组)F:Star(结构体排序+最小生成树)

    F: Star Time Limit: 1 s      Memory Limit: 128 MB Submit My Status Problem Description 31世纪,人类世界的科技已 ...

  10. POJ 1064 Cable master (二分法+精度控制)

    Cable master Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 65358   Accepted: 13453 De ...