斯坦福大学公开课机器学习: advice for applying machine learning | deciding what to try next(revisited)(针对高偏差、高方差问题的解决方法以及隐藏层数的选择)
针对高偏差、高方差问题的解决方法:
1、解决高方差问题的方案:增大训练样本量、缩小特征量、增大lambda值
2、解决高偏差问题的方案:增大特征量、增加多项式特征(比如x1*x2,x1的平方等等)、减少lambda值
隐藏层数的选择对于拟合效果的影响:
隐藏层数过少,神经网络简单,参数少,容易出现欠拟合;
隐藏层数过多,神经网络复杂,参数多,容易出现过拟合,同时计算量也庞大。
事实上,如果经常应用神经网络,特别是大型神经网络的话,会发现越大型的网络性能越好,如果发生了过拟合,可以使用正则化的方法来修正过拟合。使用一个大型的神经网络,并使用正则化来修正过拟合问题,通常比使用一个小型的神经网络效果更好。
最后,我们需要确定隐藏层的层数。默认的情况是使用一个隐藏层是比较合理的选择,但是如果你想要选择一个最合适的隐藏层层数,你也可以试试把数据分割为训练集、验证集和测试集,然后试试使用一个隐藏层的神经网络来训练模型。然后试试两个、三个隐藏层,以此类推。然后看看哪个神经网络在交叉验证集上表现得最理想。也就是说你得到了三个神经网络模型,分别有一个、两个、三个隐藏层。然后你对每一个模型,都用交叉验证集数据进行测试,算出三种情况下的交叉验证集误差Jcv,然后选出你认为最好的神经网络结构。
斯坦福大学公开课机器学习: advice for applying machine learning | deciding what to try next(revisited)(针对高偏差、高方差问题的解决方法以及隐藏层数的选择)的更多相关文章
- 斯坦福大学公开课机器学习:advice for applying machine learning | diagnosing bias vs. variance(机器学习:诊断偏差和方差问题)
当我们运行一个学习算法时,如果这个算法的表现不理想,那么有两种原因导致:要么偏差比较大.要么方差比较大.换句话说,要么是欠拟合.要么是过拟合.那么这两种情况,哪个和偏差有关.哪个和方差有关,或者是不是 ...
- 第19月第8天 斯坦福大学公开课机器学习 (吴恩达 Andrew Ng)
1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http:/ ...
- 斯坦福大学公开课机器学习: machine learning system design | error analysis(误差分析:检验算法是否有高偏差和高方差)
误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机 ...
- 斯坦福大学公开课机器学习:advice for applying machine learning | model selection and training/validation/test sets(模型选择以及训练集、交叉验证集和测试集的概念)
怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也 ...
- 斯坦福大学公开课机器学习:advice for applying machine learning - deciding what to try next(设计机器学习系统时,怎样确定最适合、最正确的方法)
假如我们在开发一个机器学习系统,想试着改进一个机器学习系统的性能,我们应该如何决定接下来应该选择哪条道路? 为了解释这一问题,以预测房价的学习例子.假如我们已经得到学习参数以后,要将我们的假设函数放到 ...
- 斯坦福大学公开课机器学习:advice for applying machine learning | learning curves (改进学习算法:高偏差和高方差与学习曲线的关系)
绘制学习曲线非常有用,比如你想检查你的学习算法,运行是否正常.或者你希望改进算法的表现或效果.那么学习曲线就是一种很好的工具.学习曲线可以判断某一个学习算法,是偏差.方差问题,或是二者皆有. 为了绘制 ...
- 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)
算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...
- 斯坦福大学公开课机器学习: advice for applying machine learning - evaluatin a phpothesis(怎么评估学习算法得到的假设以及如何防止过拟合或欠拟合)
怎样评价我们的学习算法得到的假设以及如何防止过拟合和欠拟合的问题. 当我们确定学习算法的参数时,我们考虑的是选择参数来使训练误差最小化.有人认为,得到一个很小的训练误差一定是一件好事.但其实,仅仅是因 ...
- 斯坦福大学公开课机器学习:machine learning system design | error metrics for skewed classes(偏斜类问题的定义以及针对偏斜类问题的评估度量值:查准率(precision)和召回率(recall))
上篇文章提到了误差分析以及设定误差度量值的重要性.那就是设定某个实数来评估学习算法并衡量它的表现.有了算法的评估和误差度量值,有一件重要的事情要注意,就是使用一个合适的误差度量值,有时会对学习算法造成 ...
随机推荐
- python之路--初识函数
一 . 函数 什么是函数 f(x) = x + 1 y = x + 1 # 函数是对功能或者动作的封装 函数的语法 def 函数名(): 函数体 调用: 函数名() def play(): print ...
- Linux基础学习(13)--Linux系统管理
第十三章——Linux系统管理 一.进程管理 1.进程查看: (1)进程简介:进程是正在执行的一个程序或命令,每一个进程都是一个运行的实体,都有自己的地址空间,并占用一定的系统资源. (2)进程管理的 ...
- 利用Python制作简单的小程序:IP查看器
前言 说实话,查看电脑的IP,也挺无聊的,但是够简单,所以就从这里开始吧.IP地址在操作系统里就可以直接查看.但是除了IP地址,我们也想通过IP获取地理地址和网络运营商情况.IP地址和地理地址并没有固 ...
- Object...与Object[]使用的一点区别和记录
Object是所有类的基类 简述: Object ...objects(称为可变个数的形参)这种参数定义是在不确定方法参数的情况下的一种多态表现形式.Java可变参数,即这个方法可以传递多个参数,这个 ...
- TP5系统变量输出
1.超全局变量 模板中: {$Think.sever.server_name} //全部小写,输出blog.cn 控制器: $_SERVER['SERVER_NAME'] ...
- EFI Windows 7 activition
mountvol X: /s copy SLIC.aml X:\EFI\CLOVER\ACPI\WINDOWS BOOTICE X:\EFI\CLOVER\CLOVERX64.efi slmgr -i ...
- 配置 BizTalk Server
使用“基本配置”或“自定义配置”配置 BizTalk Server. 基本配置与自定义配置 如果配置使用域组,则进行“自定义配置”. 如果配置使用自定义组名称而不是默认组名称,则进行“自定 ...
- codeforces498C
Array and Operations CodeForces - 498C You have written on a piece of paper an array of n positive i ...
- hdu-4300(kmp或者拓展kmp)
题意:乱七八糟说了一大堆,就是先给你一个长度26的字符串,对应了abcd....xyz,这是一个密码表.然后给你一个字符串,这个字符串是不完整的(完整的应该是前半部分是加密的,后半部分是解密了的),然 ...
- vi简短教程
1.模式 命令行模式:光标的移动.内容删除移动复制操作 插入模式:文字输入,即编辑状态 底行模式:文件保存或退出vi,设置编辑环境 2.基本操作 vi myfile,输入vi 文件名,则进入vi. 3 ...